{"title":"基于JE-MAP方法的数字图像相关裂纹形状识别","authors":"Norihiko Hana, M. Umeda, M. Akiyoshi, K. Amaya","doi":"10.1115/1.4056761","DOIUrl":null,"url":null,"abstract":"\n A method that estimates cracks that are invisible from the surface based on the surface deformation measured by digital image correlation (DIC) is developing. An inverse problem is set up to estimate such invisible cracks from the surface deformation. Surface deformation, measured by the DIC method, contains noise. Inverse problems have illconditions. The regularization method applied in this study is an extension of the JE-MAP method. The JE-MAP algorithm alternates between Maximum a Posteriori (MAP) method estimation and the Grab-cut (GC) method to avoid ill-conditions. The physical constraints on displacement and the forces at the cracks and the crack perimeters (ligaments) are added to the MAP method. The displacement and load at the cracks and the ligaments have a cross-sparse relationship. The MAP method estimates the displacement or the load at the cracks and the ligaments. The estimated result varies greatly at the boundary between the cracks and the ligaments. This boundary is determined by the GC method based on the estimated result. This study amplified the changes at the boundary between the cracks and the ligaments in the estimated results. The amplified results were input into the GC method to improve the boundary-determination accuracy. The regularization method developed from the JE-MAP method was combined with DIC method to estimate the cracks in invisible locations. The method proposed in this study estimated cracks more accurately than L1norm regularization in inverse problems where the observed data were strain distributions measured by the DIC method.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Crack Shapes by Digital Image Correlation Using JE-MAP Method\",\"authors\":\"Norihiko Hana, M. Umeda, M. Akiyoshi, K. Amaya\",\"doi\":\"10.1115/1.4056761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A method that estimates cracks that are invisible from the surface based on the surface deformation measured by digital image correlation (DIC) is developing. An inverse problem is set up to estimate such invisible cracks from the surface deformation. Surface deformation, measured by the DIC method, contains noise. Inverse problems have illconditions. The regularization method applied in this study is an extension of the JE-MAP method. The JE-MAP algorithm alternates between Maximum a Posteriori (MAP) method estimation and the Grab-cut (GC) method to avoid ill-conditions. The physical constraints on displacement and the forces at the cracks and the crack perimeters (ligaments) are added to the MAP method. The displacement and load at the cracks and the ligaments have a cross-sparse relationship. The MAP method estimates the displacement or the load at the cracks and the ligaments. The estimated result varies greatly at the boundary between the cracks and the ligaments. This boundary is determined by the GC method based on the estimated result. This study amplified the changes at the boundary between the cracks and the ligaments in the estimated results. The amplified results were input into the GC method to improve the boundary-determination accuracy. The regularization method developed from the JE-MAP method was combined with DIC method to estimate the cracks in invisible locations. The method proposed in this study estimated cracks more accurately than L1norm regularization in inverse problems where the observed data were strain distributions measured by the DIC method.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056761\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056761","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Identification of Crack Shapes by Digital Image Correlation Using JE-MAP Method
A method that estimates cracks that are invisible from the surface based on the surface deformation measured by digital image correlation (DIC) is developing. An inverse problem is set up to estimate such invisible cracks from the surface deformation. Surface deformation, measured by the DIC method, contains noise. Inverse problems have illconditions. The regularization method applied in this study is an extension of the JE-MAP method. The JE-MAP algorithm alternates between Maximum a Posteriori (MAP) method estimation and the Grab-cut (GC) method to avoid ill-conditions. The physical constraints on displacement and the forces at the cracks and the crack perimeters (ligaments) are added to the MAP method. The displacement and load at the cracks and the ligaments have a cross-sparse relationship. The MAP method estimates the displacement or the load at the cracks and the ligaments. The estimated result varies greatly at the boundary between the cracks and the ligaments. This boundary is determined by the GC method based on the estimated result. This study amplified the changes at the boundary between the cracks and the ligaments in the estimated results. The amplified results were input into the GC method to improve the boundary-determination accuracy. The regularization method developed from the JE-MAP method was combined with DIC method to estimate the cracks in invisible locations. The method proposed in this study estimated cracks more accurately than L1norm regularization in inverse problems where the observed data were strain distributions measured by the DIC method.
期刊介绍:
The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards.
Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.