Shuanggen Zhang, Shengdong Li, Yangbo Bai, Kai Huang
{"title":"不同激励脉冲对激光诱导瞬态居群光栅的影响分析","authors":"Shuanggen Zhang, Shengdong Li, Yangbo Bai, Kai Huang","doi":"10.1117/1.JNP.17.016013","DOIUrl":null,"url":null,"abstract":"Abstract. Motivated by atomic response to different initial coherent optical fields, we comparatively studied transient population grating (TPG) induced by successive pulse train. Time delay and pump pulse duration dependence of TPG is achieved by numerically solving the density matrix equations. Results reveal that the creation and erasure of TPG is possible by choosing the appropriate pulse parameters, which is illustrated by Bloch sphere model and quantitative validation. To obtain desired large grating amplitude for rectangular pulse, the allowed pulse duration can be extended to one order wider than that of Gaussian pulse. Population grating can be erased to near zero by a third pulse with time delay by an odd multiple of half the pulse width, and it also can be erased further to recover atom assembly back to the initial state by a fourth pulse with time delay equal to an integer multiple of pulse width. Atomic behaviors excited by different types of pulse presented here may be significant to manipulate TPG during coherent light-matter interaction.","PeriodicalId":16449,"journal":{"name":"Journal of Nanophotonics","volume":"17 1","pages":"016013 - 016013"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of laser-induced transient population gratings by different types of exciting pulse\",\"authors\":\"Shuanggen Zhang, Shengdong Li, Yangbo Bai, Kai Huang\",\"doi\":\"10.1117/1.JNP.17.016013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Motivated by atomic response to different initial coherent optical fields, we comparatively studied transient population grating (TPG) induced by successive pulse train. Time delay and pump pulse duration dependence of TPG is achieved by numerically solving the density matrix equations. Results reveal that the creation and erasure of TPG is possible by choosing the appropriate pulse parameters, which is illustrated by Bloch sphere model and quantitative validation. To obtain desired large grating amplitude for rectangular pulse, the allowed pulse duration can be extended to one order wider than that of Gaussian pulse. Population grating can be erased to near zero by a third pulse with time delay by an odd multiple of half the pulse width, and it also can be erased further to recover atom assembly back to the initial state by a fourth pulse with time delay equal to an integer multiple of pulse width. Atomic behaviors excited by different types of pulse presented here may be significant to manipulate TPG during coherent light-matter interaction.\",\"PeriodicalId\":16449,\"journal\":{\"name\":\"Journal of Nanophotonics\",\"volume\":\"17 1\",\"pages\":\"016013 - 016013\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JNP.17.016013\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.JNP.17.016013","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Analysis of laser-induced transient population gratings by different types of exciting pulse
Abstract. Motivated by atomic response to different initial coherent optical fields, we comparatively studied transient population grating (TPG) induced by successive pulse train. Time delay and pump pulse duration dependence of TPG is achieved by numerically solving the density matrix equations. Results reveal that the creation and erasure of TPG is possible by choosing the appropriate pulse parameters, which is illustrated by Bloch sphere model and quantitative validation. To obtain desired large grating amplitude for rectangular pulse, the allowed pulse duration can be extended to one order wider than that of Gaussian pulse. Population grating can be erased to near zero by a third pulse with time delay by an odd multiple of half the pulse width, and it also can be erased further to recover atom assembly back to the initial state by a fourth pulse with time delay equal to an integer multiple of pulse width. Atomic behaviors excited by different types of pulse presented here may be significant to manipulate TPG during coherent light-matter interaction.
期刊介绍:
The Journal of Nanophotonics publishes peer-reviewed papers focusing on the fabrication and application of nanostructures that facilitate the generation, propagation, manipulation, and detection of light from the infrared to the ultraviolet regimes.