新冠肺炎自适应渐进II型截尾数据下逆Lomax分布的经典和贝叶斯推理

Pub Date : 2022-08-02 DOI:10.13052/jrss0974-8024.1525
Rashi Hora, Naresh Chandra Kabdwal, Pulkit Srivastava
{"title":"新冠肺炎自适应渐进II型截尾数据下逆Lomax分布的经典和贝叶斯推理","authors":"Rashi Hora, Naresh Chandra Kabdwal, Pulkit Srivastava","doi":"10.13052/jrss0974-8024.1525","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the classical and the Bayesian inferences for unknown parameters of inverse Lomax distribution and their corresponding survival characteristics under the adaptive progressive type-II censoring scheme. In the classical setup, first we obtain the maximum likelihood estimates for the unknown shape parameter of the distribution and its corresponding survival characteristics. Further, we consider symmetric and asymmetric loss functions for the estimation of shape parameter and its corresponding survival characteristics under the Bayesian paradigm. The performances of various derived estimators were recorded using Markov chain Monte Carlo simulation technique for different sample sizes. Finally, a COVID-19 mortality data set is provided to illustrate the computation of various estimators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical and Bayesian Inference for the Inverse Lomax Distribution Under Adaptive Progressive Type-II Censored Data with COVID-19\",\"authors\":\"Rashi Hora, Naresh Chandra Kabdwal, Pulkit Srivastava\",\"doi\":\"10.13052/jrss0974-8024.1525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the classical and the Bayesian inferences for unknown parameters of inverse Lomax distribution and their corresponding survival characteristics under the adaptive progressive type-II censoring scheme. In the classical setup, first we obtain the maximum likelihood estimates for the unknown shape parameter of the distribution and its corresponding survival characteristics. Further, we consider symmetric and asymmetric loss functions for the estimation of shape parameter and its corresponding survival characteristics under the Bayesian paradigm. The performances of various derived estimators were recorded using Markov chain Monte Carlo simulation technique for different sample sizes. Finally, a COVID-19 mortality data set is provided to illustrate the computation of various estimators.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jrss0974-8024.1525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.1525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了在自适应渐进II型截尾方案下,逆Lomax分布未知参数的经典和贝叶斯推断及其相应的生存特性。在经典设置中,首先我们获得分布的未知形状参数及其相应生存特性的最大似然估计。此外,我们考虑了对称和非对称损失函数,用于在贝叶斯范式下估计形状参数及其相应的生存特征。使用马尔可夫链蒙特卡罗模拟技术记录了不同样本量下各种推导估计量的性能。最后,提供了新冠肺炎死亡率数据集,以说明各种估计量的计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Classical and Bayesian Inference for the Inverse Lomax Distribution Under Adaptive Progressive Type-II Censored Data with COVID-19
In this paper, we consider the classical and the Bayesian inferences for unknown parameters of inverse Lomax distribution and their corresponding survival characteristics under the adaptive progressive type-II censoring scheme. In the classical setup, first we obtain the maximum likelihood estimates for the unknown shape parameter of the distribution and its corresponding survival characteristics. Further, we consider symmetric and asymmetric loss functions for the estimation of shape parameter and its corresponding survival characteristics under the Bayesian paradigm. The performances of various derived estimators were recorded using Markov chain Monte Carlo simulation technique for different sample sizes. Finally, a COVID-19 mortality data set is provided to illustrate the computation of various estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1