{"title":"新冠肺炎自适应渐进II型截尾数据下逆Lomax分布的经典和贝叶斯推理","authors":"Rashi Hora, Naresh Chandra Kabdwal, Pulkit Srivastava","doi":"10.13052/jrss0974-8024.1525","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the classical and the Bayesian inferences for unknown parameters of inverse Lomax distribution and their corresponding survival characteristics under the adaptive progressive type-II censoring scheme. In the classical setup, first we obtain the maximum likelihood estimates for the unknown shape parameter of the distribution and its corresponding survival characteristics. Further, we consider symmetric and asymmetric loss functions for the estimation of shape parameter and its corresponding survival characteristics under the Bayesian paradigm. The performances of various derived estimators were recorded using Markov chain Monte Carlo simulation technique for different sample sizes. Finally, a COVID-19 mortality data set is provided to illustrate the computation of various estimators.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical and Bayesian Inference for the Inverse Lomax Distribution Under Adaptive Progressive Type-II Censored Data with COVID-19\",\"authors\":\"Rashi Hora, Naresh Chandra Kabdwal, Pulkit Srivastava\",\"doi\":\"10.13052/jrss0974-8024.1525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the classical and the Bayesian inferences for unknown parameters of inverse Lomax distribution and their corresponding survival characteristics under the adaptive progressive type-II censoring scheme. In the classical setup, first we obtain the maximum likelihood estimates for the unknown shape parameter of the distribution and its corresponding survival characteristics. Further, we consider symmetric and asymmetric loss functions for the estimation of shape parameter and its corresponding survival characteristics under the Bayesian paradigm. The performances of various derived estimators were recorded using Markov chain Monte Carlo simulation technique for different sample sizes. Finally, a COVID-19 mortality data set is provided to illustrate the computation of various estimators.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13052/jrss0974-8024.1525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.1525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classical and Bayesian Inference for the Inverse Lomax Distribution Under Adaptive Progressive Type-II Censored Data with COVID-19
In this paper, we consider the classical and the Bayesian inferences for unknown parameters of inverse Lomax distribution and their corresponding survival characteristics under the adaptive progressive type-II censoring scheme. In the classical setup, first we obtain the maximum likelihood estimates for the unknown shape parameter of the distribution and its corresponding survival characteristics. Further, we consider symmetric and asymmetric loss functions for the estimation of shape parameter and its corresponding survival characteristics under the Bayesian paradigm. The performances of various derived estimators were recorded using Markov chain Monte Carlo simulation technique for different sample sizes. Finally, a COVID-19 mortality data set is provided to illustrate the computation of various estimators.