飓风桑迪期间社会脆弱性对出租车出行时间的影响

Avipsa Roy, B. Kar
{"title":"飓风桑迪期间社会脆弱性对出租车出行时间的影响","authors":"Avipsa Roy, B. Kar","doi":"10.32866/001c.53070","DOIUrl":null,"url":null,"abstract":"The increase in the availability of GPS-based movement data has enabled the exploration of mobility patterns in urban transportation networks. Understanding the relationship between social vulnerability and transportation flows from big data during natural disasters is crucial for utilities and policymakers for decision-making purposes, such as evacuation and restoration planning. In this study, we explore the geographic variation of changes in trip times of taxi trips in New York City (NYC) before and after Hurricane Sandy (2012) using GPS trajectory data in relation to the underlying socio-economic distribution of impacted populations using localized regression technique with GWR. The findings reveal how the spatial patterns of trip change times with respect to SVI, income levels and population density in NYC.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Social Vulnerability on Taxi Trip Times during Hurricane Sandy\",\"authors\":\"Avipsa Roy, B. Kar\",\"doi\":\"10.32866/001c.53070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in the availability of GPS-based movement data has enabled the exploration of mobility patterns in urban transportation networks. Understanding the relationship between social vulnerability and transportation flows from big data during natural disasters is crucial for utilities and policymakers for decision-making purposes, such as evacuation and restoration planning. In this study, we explore the geographic variation of changes in trip times of taxi trips in New York City (NYC) before and after Hurricane Sandy (2012) using GPS trajectory data in relation to the underlying socio-economic distribution of impacted populations using localized regression technique with GWR. The findings reveal how the spatial patterns of trip change times with respect to SVI, income levels and population density in NYC.\",\"PeriodicalId\":73025,\"journal\":{\"name\":\"Findings (Sydney (N.S.W.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Findings (Sydney (N.S.W.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32866/001c.53070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32866/001c.53070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于gps的移动数据的可用性的增加使探索城市交通网络中的移动模式成为可能。在自然灾害期间,从大数据中了解社会脆弱性与交通流量之间的关系,对于公共事业和政策制定者的决策目的至关重要,例如疏散和恢复规划。在这项研究中,我们利用GPS轨迹数据,利用GWR局部回归技术,探讨了飓风桑迪(2012)前后纽约市出租车出行时间变化的地理变异,以及受影响人群的潜在社会经济分布。研究结果揭示了纽约市出行时间的空间格局与SVI、收入水平和人口密度之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Social Vulnerability on Taxi Trip Times during Hurricane Sandy
The increase in the availability of GPS-based movement data has enabled the exploration of mobility patterns in urban transportation networks. Understanding the relationship between social vulnerability and transportation flows from big data during natural disasters is crucial for utilities and policymakers for decision-making purposes, such as evacuation and restoration planning. In this study, we explore the geographic variation of changes in trip times of taxi trips in New York City (NYC) before and after Hurricane Sandy (2012) using GPS trajectory data in relation to the underlying socio-economic distribution of impacted populations using localized regression technique with GWR. The findings reveal how the spatial patterns of trip change times with respect to SVI, income levels and population density in NYC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Exploring Pedestrian Injury Severity by Incorporating Spatial Information in Machine Learning Darkness and Death in the U.S.: Walking Distances Across the Nation by Time of Day and Time of Year Activity Reduction as Resilience Indicator: Evidence with Filomena Data The Lifestyle and Mobility Connection of Community Supported Agriculture (CSA) Users Transit Fleet Electrification Barriers, Resolutions and Costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1