{"title":"聚丙烯辐照后氧化现象的GC研究","authors":"W. Głuszewski","doi":"10.2478/nuka-2021-0027","DOIUrl":null,"url":null,"abstract":"Abstract The paper summarizes the results of research on gas products of polypropylene (PP) radiolysis. Particular attention was paid to the phenomena of post-radiation degradation of PP. The protective effect of selected aromatic compounds was investigated. The research was carried out both from the point of view of obtaining radiation-resistant PP varieties and the possibility of accelerating biodegradation phenomena, e.g., PP/cellulose composition. The phenomena of post-radiation chain oxidation of PP were investigated by gas chromatography (GC). The GC in the system used (packed column, thermal conductivity detector, argon – carrier gas) enables the determination of H2, O2, CO, and CH4 in one measurement. The samples were irradiated with electron beams (EBs) accelerated in accelerators: Elektronika 10/10 with a power of 10 kW and energy of 10 MeV and LAE 13/9 with a power of 9 kW and energy up to 13 MeV. In the tests, PP without stabilizing additives (obtained directly from the production line) and non-stabilized styrene were used. Radiolytic efficiency of hydrogen evolution allowed us to estimate the number of originally formed free radicals. The maintenance of the secondary oxidation processes was the loss of oxygen and the formation of oxidation products (CO, CH4). Attention is paid to the protective effect of aromatic compounds (polystyrene (PS), polyethylene terephthalate (PET), anthracene, fluoranthene, acenaphthene, pyrene, naphthalene) both at the stage of hydrogen atom separation and the secondary oxidation process. The examples of post-radiation oxidation of PP irradiated in cryogenic conditions (–196°C) are presented. All used aromatic compounds showed a protective effect in PP radiolysis. We suppose that this phenomenon is responsible for the charge transfer along the polymer chain from the ionization spurs to the aromatic compound. The protective ranges of PS in PP radiolysis were estimated for the variously prepared PP/PS type compositions from 6 mers to 28 mers.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GC investigation of post-irradiation oxidation phenomena on polypropylene\",\"authors\":\"W. Głuszewski\",\"doi\":\"10.2478/nuka-2021-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper summarizes the results of research on gas products of polypropylene (PP) radiolysis. Particular attention was paid to the phenomena of post-radiation degradation of PP. The protective effect of selected aromatic compounds was investigated. The research was carried out both from the point of view of obtaining radiation-resistant PP varieties and the possibility of accelerating biodegradation phenomena, e.g., PP/cellulose composition. The phenomena of post-radiation chain oxidation of PP were investigated by gas chromatography (GC). The GC in the system used (packed column, thermal conductivity detector, argon – carrier gas) enables the determination of H2, O2, CO, and CH4 in one measurement. The samples were irradiated with electron beams (EBs) accelerated in accelerators: Elektronika 10/10 with a power of 10 kW and energy of 10 MeV and LAE 13/9 with a power of 9 kW and energy up to 13 MeV. In the tests, PP without stabilizing additives (obtained directly from the production line) and non-stabilized styrene were used. Radiolytic efficiency of hydrogen evolution allowed us to estimate the number of originally formed free radicals. The maintenance of the secondary oxidation processes was the loss of oxygen and the formation of oxidation products (CO, CH4). Attention is paid to the protective effect of aromatic compounds (polystyrene (PS), polyethylene terephthalate (PET), anthracene, fluoranthene, acenaphthene, pyrene, naphthalene) both at the stage of hydrogen atom separation and the secondary oxidation process. The examples of post-radiation oxidation of PP irradiated in cryogenic conditions (–196°C) are presented. All used aromatic compounds showed a protective effect in PP radiolysis. We suppose that this phenomenon is responsible for the charge transfer along the polymer chain from the ionization spurs to the aromatic compound. The protective ranges of PS in PP radiolysis were estimated for the variously prepared PP/PS type compositions from 6 mers to 28 mers.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2021-0027\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2021-0027","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
GC investigation of post-irradiation oxidation phenomena on polypropylene
Abstract The paper summarizes the results of research on gas products of polypropylene (PP) radiolysis. Particular attention was paid to the phenomena of post-radiation degradation of PP. The protective effect of selected aromatic compounds was investigated. The research was carried out both from the point of view of obtaining radiation-resistant PP varieties and the possibility of accelerating biodegradation phenomena, e.g., PP/cellulose composition. The phenomena of post-radiation chain oxidation of PP were investigated by gas chromatography (GC). The GC in the system used (packed column, thermal conductivity detector, argon – carrier gas) enables the determination of H2, O2, CO, and CH4 in one measurement. The samples were irradiated with electron beams (EBs) accelerated in accelerators: Elektronika 10/10 with a power of 10 kW and energy of 10 MeV and LAE 13/9 with a power of 9 kW and energy up to 13 MeV. In the tests, PP without stabilizing additives (obtained directly from the production line) and non-stabilized styrene were used. Radiolytic efficiency of hydrogen evolution allowed us to estimate the number of originally formed free radicals. The maintenance of the secondary oxidation processes was the loss of oxygen and the formation of oxidation products (CO, CH4). Attention is paid to the protective effect of aromatic compounds (polystyrene (PS), polyethylene terephthalate (PET), anthracene, fluoranthene, acenaphthene, pyrene, naphthalene) both at the stage of hydrogen atom separation and the secondary oxidation process. The examples of post-radiation oxidation of PP irradiated in cryogenic conditions (–196°C) are presented. All used aromatic compounds showed a protective effect in PP radiolysis. We suppose that this phenomenon is responsible for the charge transfer along the polymer chain from the ionization spurs to the aromatic compound. The protective ranges of PS in PP radiolysis were estimated for the variously prepared PP/PS type compositions from 6 mers to 28 mers.
期刊介绍:
"Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences.
The fields of research include:
radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.