Shuo Wang, Xinbin Wu, Yuhan Liang, Yushuai Xu, Shundong Guan, Kaihua Wen, Xiang Miao, Ying Liang, H. He, Yuanhua Lin, Yang Shen, C. Nan
{"title":"全固态电池用高离子电导率银晶锂Li5.5PS4.5Br1.5的简易合成","authors":"Shuo Wang, Xinbin Wu, Yuhan Liang, Yushuai Xu, Shundong Guan, Kaihua Wen, Xiang Miao, Ying Liang, H. He, Yuanhua Lin, Yang Shen, C. Nan","doi":"10.3389/fceng.2022.883502","DOIUrl":null,"url":null,"abstract":"Bromine-rich lithium argyrodite electrolytes with high ionic conductivity and low cost are promising for the replacement of flammable liquid electrolytes and separators in lithium-ion batteries. However, the synthesis process of argyrodite electrolytes is usually complex and time-consuming. We use a facile solid-state reaction method to obtain a highly Li-ion conductive Li5.5PS4.5Br1.5 (LPSB). The influence of annealing temperature on the phase and ionic conductivity of the LPSB was investigated for the first time. High ionic conductivity of 5.21 × 10−3 S cm−1 at room temperature for the LPSB with minor LiBr impurity was achieved by direct annealing at 430°C for 8 h. The In/InLi | LPSB | LiCoO2@ LiNb0.5Ta0.5O3 (LCO(coated))-LPSB cell with 8.53 mg cm−2 LCO loading shows a discharge capacity of 102 mAh g−1 with high-capacity retention of 93% after 70 cycles at 0.5 mA cm−2 at 30°C.","PeriodicalId":73073,"journal":{"name":"Frontiers in chemical engineering","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Facile synthesis of lithium argyrodite Li5.5PS4.5Br1.5 with high ionic conductivity for all-solid-state batteries\",\"authors\":\"Shuo Wang, Xinbin Wu, Yuhan Liang, Yushuai Xu, Shundong Guan, Kaihua Wen, Xiang Miao, Ying Liang, H. He, Yuanhua Lin, Yang Shen, C. Nan\",\"doi\":\"10.3389/fceng.2022.883502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bromine-rich lithium argyrodite electrolytes with high ionic conductivity and low cost are promising for the replacement of flammable liquid electrolytes and separators in lithium-ion batteries. However, the synthesis process of argyrodite electrolytes is usually complex and time-consuming. We use a facile solid-state reaction method to obtain a highly Li-ion conductive Li5.5PS4.5Br1.5 (LPSB). The influence of annealing temperature on the phase and ionic conductivity of the LPSB was investigated for the first time. High ionic conductivity of 5.21 × 10−3 S cm−1 at room temperature for the LPSB with minor LiBr impurity was achieved by direct annealing at 430°C for 8 h. The In/InLi | LPSB | LiCoO2@ LiNb0.5Ta0.5O3 (LCO(coated))-LPSB cell with 8.53 mg cm−2 LCO loading shows a discharge capacity of 102 mAh g−1 with high-capacity retention of 93% after 70 cycles at 0.5 mA cm−2 at 30°C.\",\"PeriodicalId\":73073,\"journal\":{\"name\":\"Frontiers in chemical engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in chemical engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fceng.2022.883502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in chemical engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fceng.2022.883502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
摘要
富含溴的高离子导电性、低成本的亚硝酸锂电解质有望取代锂离子电池中的易燃液体电解质和隔膜。然而,银石电解质的合成过程通常是复杂和耗时的。我们使用简单的固态反应方法获得了高Li离子传导性的Li5.5PS4.5Br1.5(LPSB)。首次研究了退火温度对LPSB相和离子电导率的影响。具有少量LiBr杂质的LPSB在室温下通过在430°C下直接退火8小时获得5.21×10−3 S cm−1的高离子电导率。具有8.53 mg cm−2 LCO负载的In/InLi|LPSB|LiCoO2@LiNb0.5Ta0.5O3(LCO(涂层))-LPSB电池在30°C下0.5 mA cm−2下70次循环后显示出102 mAh g−1的放电容量和93%的高容量保持率。
Facile synthesis of lithium argyrodite Li5.5PS4.5Br1.5 with high ionic conductivity for all-solid-state batteries
Bromine-rich lithium argyrodite electrolytes with high ionic conductivity and low cost are promising for the replacement of flammable liquid electrolytes and separators in lithium-ion batteries. However, the synthesis process of argyrodite electrolytes is usually complex and time-consuming. We use a facile solid-state reaction method to obtain a highly Li-ion conductive Li5.5PS4.5Br1.5 (LPSB). The influence of annealing temperature on the phase and ionic conductivity of the LPSB was investigated for the first time. High ionic conductivity of 5.21 × 10−3 S cm−1 at room temperature for the LPSB with minor LiBr impurity was achieved by direct annealing at 430°C for 8 h. The In/InLi | LPSB | LiCoO2@ LiNb0.5Ta0.5O3 (LCO(coated))-LPSB cell with 8.53 mg cm−2 LCO loading shows a discharge capacity of 102 mAh g−1 with high-capacity retention of 93% after 70 cycles at 0.5 mA cm−2 at 30°C.