确定有越冬蓝藻的地点并确定其优先顺序,为有害藻华的预防性管理提供信息

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-01-01 DOI:10.57257/japm-d-22-0000x
Alyssa Calomeni
{"title":"确定有越冬蓝藻的地点并确定其优先顺序,为有害藻华的预防性管理提供信息","authors":"Alyssa Calomeni","doi":"10.57257/japm-d-22-0000x","DOIUrl":null,"url":null,"abstract":"Cyanobacteria causing harmful algal blooms (HABs) can overwinter in sediments as quiescent cells (akinetes or vegetative colonies) and contribute to bloom resurgences. Targeting overwintering cells in sediments for preventative management may provide a viable approach to delay onset and mitigate blooms. However, there are limited resources for this novel strategy. Given the growing global impact of HABs, the ability to identify and prioritize sites that are influenced by overwintering cells will be a critical step for preventative management. Therefore, the overall objective of this study was to identify and illustrate relevant data to support identification and prioritization of sites that contain overwintering cells with the potential to form HABs. To achieve this, sediment samples were collected from three HAB-affected reservoirs (Marion Reservoir, KS; Fort Gibson Lake, OK, and Heyburn Lake, OK) as pertinent examples. Cyanobacteria enumeration and growth potential data from incubation studies were assembled for prioriti-zation. Overwintering cells were present in all HAB-affected reservoirs, with 85% of sites (n ¼ 13) containing overwin-tering cells in sediments and 54% of sites (n ¼ 13) with a planktonic growth potential producing problematic cell densities (. 100,000 cells ml􀀁1). On the basis of the weight of evidence, Marion Reservoir, followed by Fort Gibson, and last, Heyburn Lake, have the greatest potential for over-wintering cells to contribute to HABs. These data indicate that a monitoring approach should consider at least two lines of evidence: 1) presence and density of overwintering cyanobacteria and 2) growth potential as informed by laboratory incubation studies to predict growth risk and prioritize locations for preventative management.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"dentification and prioritization of sites with overwintering cyanobacteria to inform preventative management of harmful algal blooms\",\"authors\":\"Alyssa Calomeni\",\"doi\":\"10.57257/japm-d-22-0000x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyanobacteria causing harmful algal blooms (HABs) can overwinter in sediments as quiescent cells (akinetes or vegetative colonies) and contribute to bloom resurgences. Targeting overwintering cells in sediments for preventative management may provide a viable approach to delay onset and mitigate blooms. However, there are limited resources for this novel strategy. Given the growing global impact of HABs, the ability to identify and prioritize sites that are influenced by overwintering cells will be a critical step for preventative management. Therefore, the overall objective of this study was to identify and illustrate relevant data to support identification and prioritization of sites that contain overwintering cells with the potential to form HABs. To achieve this, sediment samples were collected from three HAB-affected reservoirs (Marion Reservoir, KS; Fort Gibson Lake, OK, and Heyburn Lake, OK) as pertinent examples. Cyanobacteria enumeration and growth potential data from incubation studies were assembled for prioriti-zation. Overwintering cells were present in all HAB-affected reservoirs, with 85% of sites (n ¼ 13) containing overwin-tering cells in sediments and 54% of sites (n ¼ 13) with a planktonic growth potential producing problematic cell densities (. 100,000 cells ml􀀁1). On the basis of the weight of evidence, Marion Reservoir, followed by Fort Gibson, and last, Heyburn Lake, have the greatest potential for over-wintering cells to contribute to HABs. These data indicate that a monitoring approach should consider at least two lines of evidence: 1) presence and density of overwintering cyanobacteria and 2) growth potential as informed by laboratory incubation studies to predict growth risk and prioritize locations for preventative management.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.57257/japm-d-22-0000x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.57257/japm-d-22-0000x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

引起有害藻华(HABs)的蓝藻可以在沉积物中作为静止细胞(活动菌或营养菌落)越冬,并有助于藻华的恢复。针对沉积物中的越冬细胞进行预防性管理可能为延缓和减轻藻华提供了可行的方法。然而,这种新策略的资源有限。鉴于有害藻华对全球的影响越来越大,识别和优先考虑受越冬细胞影响的地点的能力将是预防性管理的关键一步。因此,本研究的总体目标是确定和说明相关数据,以支持识别和优先考虑含有可能形成有害藻华的越冬细胞的地点。为了实现这一目标,从三个受赤潮影响的水库(Marion水库,KS;吉布森堡湖(Fort Gibson Lake, OK)和海本湖(Heyburn Lake, OK)都是相关的例子。蓝藻枚举和生长潜力的数据从孵化研究组装优先级。所有受赤潮影响的水库中都存在越冬细胞,沉积物中85%的地点(n¼13)含有越冬细胞,54%的地点(n¼13)具有浮游生长潜力,产生了问题的细胞密度(n¼13)。100,000 cells ml􀀁1)。根据证据的重量,马里恩水库,其次是吉布森堡,最后是海本湖,具有最大的越冬细胞促进赤潮的潜力。这些数据表明,监测方法应考虑至少两方面的证据:1)越冬蓝藻的存在和密度;2)实验室孵化研究提供的生长潜力,以预测生长风险并优先考虑预防性管理的地点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
dentification and prioritization of sites with overwintering cyanobacteria to inform preventative management of harmful algal blooms
Cyanobacteria causing harmful algal blooms (HABs) can overwinter in sediments as quiescent cells (akinetes or vegetative colonies) and contribute to bloom resurgences. Targeting overwintering cells in sediments for preventative management may provide a viable approach to delay onset and mitigate blooms. However, there are limited resources for this novel strategy. Given the growing global impact of HABs, the ability to identify and prioritize sites that are influenced by overwintering cells will be a critical step for preventative management. Therefore, the overall objective of this study was to identify and illustrate relevant data to support identification and prioritization of sites that contain overwintering cells with the potential to form HABs. To achieve this, sediment samples were collected from three HAB-affected reservoirs (Marion Reservoir, KS; Fort Gibson Lake, OK, and Heyburn Lake, OK) as pertinent examples. Cyanobacteria enumeration and growth potential data from incubation studies were assembled for prioriti-zation. Overwintering cells were present in all HAB-affected reservoirs, with 85% of sites (n ¼ 13) containing overwin-tering cells in sediments and 54% of sites (n ¼ 13) with a planktonic growth potential producing problematic cell densities (. 100,000 cells ml􀀁1). On the basis of the weight of evidence, Marion Reservoir, followed by Fort Gibson, and last, Heyburn Lake, have the greatest potential for over-wintering cells to contribute to HABs. These data indicate that a monitoring approach should consider at least two lines of evidence: 1) presence and density of overwintering cyanobacteria and 2) growth potential as informed by laboratory incubation studies to predict growth risk and prioritize locations for preventative management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1