模型不确定性下的马尔可夫决策过程

IF 1.6 3区 经济学 Q3 BUSINESS, FINANCE Mathematical Finance Pub Date : 2023-03-17 DOI:10.1111/mafi.12381
Ariel Neufeld, Julian Sester, Mario Šikić
{"title":"模型不确定性下的马尔可夫决策过程","authors":"Ariel Neufeld,&nbsp;Julian Sester,&nbsp;Mario Šikić","doi":"10.1111/mafi.12381","DOIUrl":null,"url":null,"abstract":"<p>We introduce a general framework for Markov decision problems under model uncertainty in a discrete-time infinite horizon setting. By providing a dynamic programming principle, we obtain a local-to-global paradigm, namely solving a local, that is, a one time-step robust optimization problem leads to an optimizer of the global (i.e., infinite time-steps) robust stochastic optimal control problem, as well as to a corresponding worst-case measure. Moreover, we apply this framework to portfolio optimization involving data of the <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>&amp;</mo>\n <mi>P</mi>\n <mspace></mspace>\n <mn>500</mn>\n </mrow>\n <annotation>$S\\&amp;P\\nobreakspace 500$</annotation>\n </semantics></math>. We present two different types of ambiguity sets; one is fully data-driven given by a Wasserstein-ball around the empirical measure, the second one is described by a parametric set of multivariate normal distributions, where the corresponding uncertainty sets of the parameters are estimated from the data. It turns out that in scenarios where the market is volatile or bearish, the optimal portfolio strategies from the corresponding robust optimization problem outperforms the ones without model uncertainty, showcasing the importance of taking model uncertainty into account.</p>","PeriodicalId":49867,"journal":{"name":"Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Markov decision processes under model uncertainty\",\"authors\":\"Ariel Neufeld,&nbsp;Julian Sester,&nbsp;Mario Šikić\",\"doi\":\"10.1111/mafi.12381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a general framework for Markov decision problems under model uncertainty in a discrete-time infinite horizon setting. By providing a dynamic programming principle, we obtain a local-to-global paradigm, namely solving a local, that is, a one time-step robust optimization problem leads to an optimizer of the global (i.e., infinite time-steps) robust stochastic optimal control problem, as well as to a corresponding worst-case measure. Moreover, we apply this framework to portfolio optimization involving data of the <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mo>&amp;</mo>\\n <mi>P</mi>\\n <mspace></mspace>\\n <mn>500</mn>\\n </mrow>\\n <annotation>$S\\\\&amp;P\\\\nobreakspace 500$</annotation>\\n </semantics></math>. We present two different types of ambiguity sets; one is fully data-driven given by a Wasserstein-ball around the empirical measure, the second one is described by a parametric set of multivariate normal distributions, where the corresponding uncertainty sets of the parameters are estimated from the data. It turns out that in scenarios where the market is volatile or bearish, the optimal portfolio strategies from the corresponding robust optimization problem outperforms the ones without model uncertainty, showcasing the importance of taking model uncertainty into account.</p>\",\"PeriodicalId\":49867,\"journal\":{\"name\":\"Mathematical Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Finance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12381\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Finance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mafi.12381","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 5

摘要

我们介绍了离散时间无限时域环境中模型不确定性下马尔可夫决策问题的一般框架。通过提供动态规划原理,我们获得了一个局部到全局的范式,即解决局部的,即一个时间步长的鲁棒优化问题,得到全局(即无限时间步长)鲁棒随机最优控制问题的优化器,以及相应的最坏情况测度。此外,我们将该框架应用于涉及标准普尔500美元S&P\nobreakspace 500美元数据的投资组合优化。我们提出了两种不同类型的歧义集;一个是由Wasserstein球围绕经验测度给出的完全数据驱动的,第二个是由多变量正态分布的参数集描述的,其中参数的相应不确定性集是根据数据估计的。事实证明,在市场波动或看跌的情况下,相应稳健优化问题的最优投资组合策略优于没有模型不确定性的投资组合策略,这表明了考虑模型不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Markov decision processes under model uncertainty

We introduce a general framework for Markov decision problems under model uncertainty in a discrete-time infinite horizon setting. By providing a dynamic programming principle, we obtain a local-to-global paradigm, namely solving a local, that is, a one time-step robust optimization problem leads to an optimizer of the global (i.e., infinite time-steps) robust stochastic optimal control problem, as well as to a corresponding worst-case measure. Moreover, we apply this framework to portfolio optimization involving data of the S & P 500 $S\&P\nobreakspace 500$ . We present two different types of ambiguity sets; one is fully data-driven given by a Wasserstein-ball around the empirical measure, the second one is described by a parametric set of multivariate normal distributions, where the corresponding uncertainty sets of the parameters are estimated from the data. It turns out that in scenarios where the market is volatile or bearish, the optimal portfolio strategies from the corresponding robust optimization problem outperforms the ones without model uncertainty, showcasing the importance of taking model uncertainty into account.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Finance
Mathematical Finance 数学-数学跨学科应用
CiteScore
4.10
自引率
6.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Mathematical Finance seeks to publish original research articles focused on the development and application of novel mathematical and statistical methods for the analysis of financial problems. The journal welcomes contributions on new statistical methods for the analysis of financial problems. Empirical results will be appropriate to the extent that they illustrate a statistical technique, validate a model or provide insight into a financial problem. Papers whose main contribution rests on empirical results derived with standard approaches will not be considered.
期刊最新文献
Issue Information Designing stablecoins Systemic risk in markets with multiple central counterparties Joint calibration to SPX and VIX options with signature‐based models Dynamic equilibrium with insider information and general uninformed agent utility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1