大气腐蚀条件下金属纳米涂层插头接头磨损磨损效果研究

Peng-zhu Wang, Liang Xu
{"title":"大气腐蚀条件下金属纳米涂层插头接头磨损磨损效果研究","authors":"Peng-zhu Wang, Liang Xu","doi":"10.1166/NNL.2020.3203","DOIUrl":null,"url":null,"abstract":"The plug connector is the most widely used type of separable connector; however, the sliding friction that occurs during the plug-in process causes wear and wiping effects. Wear is a form of damage that occurs to the anti-corrosion coating during the sliding process, and wiping refers\n to the cleaning effect of corrosion products during the sliding process. Both have negative and positive effects on electrical contact reliability in corrosive environments. Therefore, wear and wiping are key factors in studying the life and reliability of connectors in atmospheric corrosion\n environments. Atmospheric corrosion is the main mechanism leading to connector contact failure. There have been many related studies on simple connector atmospheric corrosion, but research on the influence of wear and wipe on atmospheric corrosion and the influence of contact resistance degradation\n is still not comprehensive. To study the influence of wear and wiping on contact reliability during the plug connector-mating process, this work evaluates the metal nano-coating connector plugging process as the object, and the contact resistance degradation model under atmospheric corrosion\n as the basis, and the effect of wear and wiping on corrosion degradation as the research tool. Ultimately, the influence of wear and wiping on contact resistance is studied in detail. Finally, combined with the actual usage of the plug-in connector, the contact reliability of metal nano-coating\n plug connectors under the action of abrasion and wiping is studied.","PeriodicalId":18871,"journal":{"name":"Nanoscience and Nanotechnology Letters","volume":"12 1","pages":"1006-1014"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Wear and Abrasion Effect of Metal Nano-Coating Plug Connectors Under Atmospheric Corrosion Conditions\",\"authors\":\"Peng-zhu Wang, Liang Xu\",\"doi\":\"10.1166/NNL.2020.3203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plug connector is the most widely used type of separable connector; however, the sliding friction that occurs during the plug-in process causes wear and wiping effects. Wear is a form of damage that occurs to the anti-corrosion coating during the sliding process, and wiping refers\\n to the cleaning effect of corrosion products during the sliding process. Both have negative and positive effects on electrical contact reliability in corrosive environments. Therefore, wear and wiping are key factors in studying the life and reliability of connectors in atmospheric corrosion\\n environments. Atmospheric corrosion is the main mechanism leading to connector contact failure. There have been many related studies on simple connector atmospheric corrosion, but research on the influence of wear and wipe on atmospheric corrosion and the influence of contact resistance degradation\\n is still not comprehensive. To study the influence of wear and wiping on contact reliability during the plug connector-mating process, this work evaluates the metal nano-coating connector plugging process as the object, and the contact resistance degradation model under atmospheric corrosion\\n as the basis, and the effect of wear and wiping on corrosion degradation as the research tool. Ultimately, the influence of wear and wiping on contact resistance is studied in detail. Finally, combined with the actual usage of the plug-in connector, the contact reliability of metal nano-coating\\n plug connectors under the action of abrasion and wiping is studied.\",\"PeriodicalId\":18871,\"journal\":{\"name\":\"Nanoscience and Nanotechnology Letters\",\"volume\":\"12 1\",\"pages\":\"1006-1014\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/NNL.2020.3203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/NNL.2020.3203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

插头连接器是应用最广泛的可分离连接器类型;然而,在插入过程中发生的滑动摩擦会导致磨损和擦拭效果。磨损是防腐涂层在滑动过程中发生的一种损坏形式,擦拭是指腐蚀产物在滑动过程的清洁效果。两者对腐蚀性环境中的电接触可靠性都有负面和正面影响。因此,磨损和擦拭是研究连接器在大气腐蚀环境中的寿命和可靠性的关键因素。大气腐蚀是导致连接器接触失效的主要机制。关于简单连接器的大气腐蚀已有许多相关研究,但关于磨损和擦拭对大气腐蚀的影响以及接触电阻退化的影响的研究仍然不全面。为了研究插塞连接器对接过程中磨损和擦拭对接触可靠性的影响,本工作以金属纳米涂层连接器插接过程为对象,以大气腐蚀下的接触电阻退化模型为基础,以磨损和擦拭对于腐蚀退化的影响为研究工具。最后,详细研究了磨损和擦拭对接触电阻的影响。最后,结合插塞连接器的实际使用,研究了金属纳米涂层插塞连接器在磨损和擦拭作用下的接触可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Wear and Abrasion Effect of Metal Nano-Coating Plug Connectors Under Atmospheric Corrosion Conditions
The plug connector is the most widely used type of separable connector; however, the sliding friction that occurs during the plug-in process causes wear and wiping effects. Wear is a form of damage that occurs to the anti-corrosion coating during the sliding process, and wiping refers to the cleaning effect of corrosion products during the sliding process. Both have negative and positive effects on electrical contact reliability in corrosive environments. Therefore, wear and wiping are key factors in studying the life and reliability of connectors in atmospheric corrosion environments. Atmospheric corrosion is the main mechanism leading to connector contact failure. There have been many related studies on simple connector atmospheric corrosion, but research on the influence of wear and wipe on atmospheric corrosion and the influence of contact resistance degradation is still not comprehensive. To study the influence of wear and wiping on contact reliability during the plug connector-mating process, this work evaluates the metal nano-coating connector plugging process as the object, and the contact resistance degradation model under atmospheric corrosion as the basis, and the effect of wear and wiping on corrosion degradation as the research tool. Ultimately, the influence of wear and wiping on contact resistance is studied in detail. Finally, combined with the actual usage of the plug-in connector, the contact reliability of metal nano-coating plug connectors under the action of abrasion and wiping is studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscience and Nanotechnology Letters
Nanoscience and Nanotechnology Letters Physical, Chemical & Earth Sciences-MATERIALS SCIENCE, MULTIDISCIPLINARY
自引率
0.00%
发文量
0
审稿时长
2.6 months
期刊最新文献
Identification of Immune-Related Prognostic Biomarkers in Pancreatic Cancer Nanocomposite Detection of Elemental Impurities and Process Correlation Analysis of Ceftriaxone Sodium for Injection Astragalus Polysaccharide Nano-Liposomes Modulate the Inflammatory Response and Oxidative Stress in Stroke-Associated Pneumonia by Increasing OIP5-AS1 to Regulate the miR-128-3p/SIRT1 Pathway miR-199a-3p Inhibitor Delivered Through Nano-Drug Delivery Systems Suppresses Tumor Cell Survival and Metastasis Construction of Functional Renal Targeting Nano Drug Liposome and Its Effect on Lupus Nephritis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1