低压涡轮入口管道二次流损失预测

IF 1.1 4区 工程技术 Q3 MATERIALS SCIENCE, CHARACTERIZATION & TESTING Archives of Mechanics Pub Date : 2019-02-27 DOI:10.24423/AOM.3025
P. Jonak, T. Borzęcki, S. Kubacki
{"title":"低压涡轮入口管道二次流损失预测","authors":"P. Jonak, T. Borzęcki, S. Kubacki","doi":"10.24423/AOM.3025","DOIUrl":null,"url":null,"abstract":"Secondary flow features and total pressure losses by means of the total pressure loss coefficient are discussed in an entrance duct, named a turbine central frame (TCF), to a four-stage low-pressure turbine (LPT) of aero-engine. The massaveraged total pressure losses are also analysed at outlets from selected components of the low-pressure turbine. The Reynolds-averaged Navier–Stokes (RANS) technique has been employed for prediction of mean flow characteristics. The numerical results are compared with experimental data obtained in Polonia Aero Lab in Zielonka (Poland). Good agreement is obtained between measured and predicted global flow characteristics and the pressure coefficient on a surface of an inlet guide vane. The high values of the loss coefficient are observed at endwalls, in cores of streamwiseoriented vortex structures near to the endwalls and in the wakes behind the vanes. It is found that the endwall losses contribute by far the most to the total losses at the outlets from the turbine central frame and first vane-row and they become lower at an outlet f rom the first blade-row and at outlets form consecutive vane- and blade-rows.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of secondary flow losses in an entrance duct to a low-pressure turbine\",\"authors\":\"P. Jonak, T. Borzęcki, S. Kubacki\",\"doi\":\"10.24423/AOM.3025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Secondary flow features and total pressure losses by means of the total pressure loss coefficient are discussed in an entrance duct, named a turbine central frame (TCF), to a four-stage low-pressure turbine (LPT) of aero-engine. The massaveraged total pressure losses are also analysed at outlets from selected components of the low-pressure turbine. The Reynolds-averaged Navier–Stokes (RANS) technique has been employed for prediction of mean flow characteristics. The numerical results are compared with experimental data obtained in Polonia Aero Lab in Zielonka (Poland). Good agreement is obtained between measured and predicted global flow characteristics and the pressure coefficient on a surface of an inlet guide vane. The high values of the loss coefficient are observed at endwalls, in cores of streamwiseoriented vortex structures near to the endwalls and in the wakes behind the vanes. It is found that the endwall losses contribute by far the most to the total losses at the outlets from the turbine central frame and first vane-row and they become lower at an outlet f rom the first blade-row and at outlets form consecutive vane- and blade-rows.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.3025\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3025","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了航空发动机四级低压涡轮(LPT)在涡轮中心架(TCF)入口管道内的二次流特征和用总压损失系数计算的总压损失。本文还分析了低压汽轮机各部件出口的总平均压力损失。reynolds -average Navier-Stokes (RANS)技术被用于预测平均流动特性。数值结果与波兰Zielonka Polonia航空实验室的实验数据进行了比较。测量和预测的整体流动特性与进口导叶表面的压力系数吻合良好。损失系数的高值出现在端壁、靠近端壁的流向涡结构的核心以及叶片后的尾迹处。结果表明,端壁损失在涡轮机中央机架和第一叶片排出口处的总损失中所占比例最大,而在第一叶片排出口处和连续叶片排出口处,端壁损失相对较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of secondary flow losses in an entrance duct to a low-pressure turbine
Secondary flow features and total pressure losses by means of the total pressure loss coefficient are discussed in an entrance duct, named a turbine central frame (TCF), to a four-stage low-pressure turbine (LPT) of aero-engine. The massaveraged total pressure losses are also analysed at outlets from selected components of the low-pressure turbine. The Reynolds-averaged Navier–Stokes (RANS) technique has been employed for prediction of mean flow characteristics. The numerical results are compared with experimental data obtained in Polonia Aero Lab in Zielonka (Poland). Good agreement is obtained between measured and predicted global flow characteristics and the pressure coefficient on a surface of an inlet guide vane. The high values of the loss coefficient are observed at endwalls, in cores of streamwiseoriented vortex structures near to the endwalls and in the wakes behind the vanes. It is found that the endwall losses contribute by far the most to the total losses at the outlets from the turbine central frame and first vane-row and they become lower at an outlet f rom the first blade-row and at outlets form consecutive vane- and blade-rows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Mechanics
Archives of Mechanics 工程技术-材料科学:表征与测试
CiteScore
1.40
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on: -mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities; -methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems; -dynamics of material systems; -fluid flows and interactions with solids. Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above. The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc. Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.
期刊最新文献
Comparative FE-studies of interface behavior of granular Cosserat materials under constant pressure and constant volume conditions Application of a geometrically nonlinear elastoplastic gradient-enhanced damage model with incremental potential to composite microstructures Rotorcraft thickness noise control Transient dynamic analysis of functionally graded micro-beams considering small-scale effects Quasi-static and dynamic characterization of ultrafine-grained 2017A-T4 aluminium alloy processed by accumulative roll bonding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1