氮化硅基克尔频率梳及其在计量中的应用

IF 20.6 1区 物理与天体物理 Q1 OPTICS Advanced Photonics Pub Date : 2022-11-01 DOI:10.1117/1.AP.4.6.064001
Zhaoyang Sun, Yang Li, B. Bai, Zhendong Zhu, Hongbo Sun
{"title":"氮化硅基克尔频率梳及其在计量中的应用","authors":"Zhaoyang Sun, Yang Li, B. Bai, Zhendong Zhu, Hongbo Sun","doi":"10.1117/1.AP.4.6.064001","DOIUrl":null,"url":null,"abstract":"Abstract. Kerr frequency combs have been attracting significant interest due to their rich physics and broad applications in metrology, microwave photonics, and telecommunications. In this review, we first introduce the fundamental physics, master equations, simulation methods, and dynamic process of Kerr frequency combs. We then analyze the most promising material platform for realizing Kerr frequency combs—silicon nitride on insulator (SNOI) in comparison with other material platforms. Moreover, we discuss the fabrication methods, process optimization as well as tuning and measurement schemes of SNOI-based Kerr frequency combs. Furthermore, we highlight several emerging applications of Kerr frequency combs in metrology, including spectroscopy, ranging, and timing. Finally, we summarize this review and envision the future development of chip-scale Kerr frequency combs from the viewpoint of theory, material platforms, and tuning methods.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"4 1","pages":"064001 - 064001"},"PeriodicalIF":20.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Silicon nitride-based Kerr frequency combs and applications in metrology\",\"authors\":\"Zhaoyang Sun, Yang Li, B. Bai, Zhendong Zhu, Hongbo Sun\",\"doi\":\"10.1117/1.AP.4.6.064001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Kerr frequency combs have been attracting significant interest due to their rich physics and broad applications in metrology, microwave photonics, and telecommunications. In this review, we first introduce the fundamental physics, master equations, simulation methods, and dynamic process of Kerr frequency combs. We then analyze the most promising material platform for realizing Kerr frequency combs—silicon nitride on insulator (SNOI) in comparison with other material platforms. Moreover, we discuss the fabrication methods, process optimization as well as tuning and measurement schemes of SNOI-based Kerr frequency combs. Furthermore, we highlight several emerging applications of Kerr frequency combs in metrology, including spectroscopy, ranging, and timing. Finally, we summarize this review and envision the future development of chip-scale Kerr frequency combs from the viewpoint of theory, material platforms, and tuning methods.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":\"4 1\",\"pages\":\"064001 - 064001\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.AP.4.6.064001\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.4.6.064001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要克尔频率梳由于其丰富的物理特性和在计量学、微波光子学和电信领域的广泛应用而引起了人们的极大兴趣。本文首先介绍了克尔频率梳的基本物理特性、主方程、仿真方法和动态过程。然后,与其他材料平台相比,我们分析了最有希望实现Kerr频率梳的材料平台-绝缘体上氮化硅(SNOI)。此外,我们还讨论了基于snoi的Kerr频率梳的制作方法、工艺优化以及调谐和测量方案。此外,我们重点介绍了克尔频率梳在计量学中的几个新兴应用,包括光谱学,测距和定时。最后,对本文进行了总结,并从理论、材料平台和调谐方法等方面展望了芯片级克尔频率梳的未来发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Silicon nitride-based Kerr frequency combs and applications in metrology
Abstract. Kerr frequency combs have been attracting significant interest due to their rich physics and broad applications in metrology, microwave photonics, and telecommunications. In this review, we first introduce the fundamental physics, master equations, simulation methods, and dynamic process of Kerr frequency combs. We then analyze the most promising material platform for realizing Kerr frequency combs—silicon nitride on insulator (SNOI) in comparison with other material platforms. Moreover, we discuss the fabrication methods, process optimization as well as tuning and measurement schemes of SNOI-based Kerr frequency combs. Furthermore, we highlight several emerging applications of Kerr frequency combs in metrology, including spectroscopy, ranging, and timing. Finally, we summarize this review and envision the future development of chip-scale Kerr frequency combs from the viewpoint of theory, material platforms, and tuning methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.70
自引率
1.20%
发文量
49
审稿时长
18 weeks
期刊介绍: Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential. The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria: -New concepts in terms of fundamental research with great impact and significance -State-of-the-art technologies in terms of novel methods for important applications -Reviews of recent major advances and discoveries and state-of-the-art benchmarking. The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.
期刊最新文献
Organic near-infrared optoelectronic materials and devices: an overview Giant photoinduced reflectivity modulation of nonlocal resonances in silicon metasurfaces Quantum dots for optoelectronics Surfing the metasurface: a conversation with Din Ping Tsai Nonlinear chiral metaphotonics: a perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1