Zhaoyang Sun, Yang Li, B. Bai, Zhendong Zhu, Hongbo Sun
{"title":"氮化硅基克尔频率梳及其在计量中的应用","authors":"Zhaoyang Sun, Yang Li, B. Bai, Zhendong Zhu, Hongbo Sun","doi":"10.1117/1.AP.4.6.064001","DOIUrl":null,"url":null,"abstract":"Abstract. Kerr frequency combs have been attracting significant interest due to their rich physics and broad applications in metrology, microwave photonics, and telecommunications. In this review, we first introduce the fundamental physics, master equations, simulation methods, and dynamic process of Kerr frequency combs. We then analyze the most promising material platform for realizing Kerr frequency combs—silicon nitride on insulator (SNOI) in comparison with other material platforms. Moreover, we discuss the fabrication methods, process optimization as well as tuning and measurement schemes of SNOI-based Kerr frequency combs. Furthermore, we highlight several emerging applications of Kerr frequency combs in metrology, including spectroscopy, ranging, and timing. Finally, we summarize this review and envision the future development of chip-scale Kerr frequency combs from the viewpoint of theory, material platforms, and tuning methods.","PeriodicalId":33241,"journal":{"name":"Advanced Photonics","volume":"4 1","pages":"064001 - 064001"},"PeriodicalIF":20.6000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Silicon nitride-based Kerr frequency combs and applications in metrology\",\"authors\":\"Zhaoyang Sun, Yang Li, B. Bai, Zhendong Zhu, Hongbo Sun\",\"doi\":\"10.1117/1.AP.4.6.064001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Kerr frequency combs have been attracting significant interest due to their rich physics and broad applications in metrology, microwave photonics, and telecommunications. In this review, we first introduce the fundamental physics, master equations, simulation methods, and dynamic process of Kerr frequency combs. We then analyze the most promising material platform for realizing Kerr frequency combs—silicon nitride on insulator (SNOI) in comparison with other material platforms. Moreover, we discuss the fabrication methods, process optimization as well as tuning and measurement schemes of SNOI-based Kerr frequency combs. Furthermore, we highlight several emerging applications of Kerr frequency combs in metrology, including spectroscopy, ranging, and timing. Finally, we summarize this review and envision the future development of chip-scale Kerr frequency combs from the viewpoint of theory, material platforms, and tuning methods.\",\"PeriodicalId\":33241,\"journal\":{\"name\":\"Advanced Photonics\",\"volume\":\"4 1\",\"pages\":\"064001 - 064001\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1117/1.AP.4.6.064001\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1117/1.AP.4.6.064001","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Silicon nitride-based Kerr frequency combs and applications in metrology
Abstract. Kerr frequency combs have been attracting significant interest due to their rich physics and broad applications in metrology, microwave photonics, and telecommunications. In this review, we first introduce the fundamental physics, master equations, simulation methods, and dynamic process of Kerr frequency combs. We then analyze the most promising material platform for realizing Kerr frequency combs—silicon nitride on insulator (SNOI) in comparison with other material platforms. Moreover, we discuss the fabrication methods, process optimization as well as tuning and measurement schemes of SNOI-based Kerr frequency combs. Furthermore, we highlight several emerging applications of Kerr frequency combs in metrology, including spectroscopy, ranging, and timing. Finally, we summarize this review and envision the future development of chip-scale Kerr frequency combs from the viewpoint of theory, material platforms, and tuning methods.
期刊介绍:
Advanced Photonics is a highly selective, open-access, international journal that publishes innovative research in all areas of optics and photonics, including fundamental and applied research. The journal publishes top-quality original papers, letters, and review articles, reflecting significant advances and breakthroughs in theoretical and experimental research and novel applications with considerable potential.
The journal seeks high-quality, high-impact articles across the entire spectrum of optics, photonics, and related fields with specific emphasis on the following acceptance criteria:
-New concepts in terms of fundamental research with great impact and significance
-State-of-the-art technologies in terms of novel methods for important applications
-Reviews of recent major advances and discoveries and state-of-the-art benchmarking.
The journal also publishes news and commentaries highlighting scientific and technological discoveries, breakthroughs, and achievements in optics, photonics, and related fields.