掺杂硒化铜用于调整碲化锗基材料的晶体结构和热电性能

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2023-02-02 DOI:10.1021/acsami.2c21002
Luo Yue, Pengpeng Bai and Shuqi Zheng*, 
{"title":"掺杂硒化铜用于调整碲化锗基材料的晶体结构和热电性能","authors":"Luo Yue,&nbsp;Pengpeng Bai and Shuqi Zheng*,&nbsp;","doi":"10.1021/acsami.2c21002","DOIUrl":null,"url":null,"abstract":"<p >Germanium telluride (GeTe) compounds exhibit excellent thermoelectric performance. In this study, copper selenide (Cu<sub>2</sub>Se) was used to tune the crystal structure and carrier concentration (<i>n</i><sub>H</sub>) of GeTe materials. The <i>zT</i> of the 1% Cu<sub>2</sub>Se-doped GeTe sample reaches 1.32, which is 52% higher than that of the pure phase. The results show that Cu<sub>2</sub>Se tunes the GeTe crystal structure and carrier concentration to achieve promising enhancements to the thermoelectric performance. Meanwhile, a herringbone-like crystal structure that reduces the lattice thermal conductivity was observed. However, because the directional movement of Cu ions at high temperatures leads to an increase in electrical conductivity, the electronic thermal conductivity also increased. This study focuses on crystal engineering strategies for the study of nontoxic thermoelectric materials.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Doping Copper Selenide for Tuning the Crystal Structure and Thermoelectric Performance of Germanium Telluride-Based Materials\",\"authors\":\"Luo Yue,&nbsp;Pengpeng Bai and Shuqi Zheng*,&nbsp;\",\"doi\":\"10.1021/acsami.2c21002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Germanium telluride (GeTe) compounds exhibit excellent thermoelectric performance. In this study, copper selenide (Cu<sub>2</sub>Se) was used to tune the crystal structure and carrier concentration (<i>n</i><sub>H</sub>) of GeTe materials. The <i>zT</i> of the 1% Cu<sub>2</sub>Se-doped GeTe sample reaches 1.32, which is 52% higher than that of the pure phase. The results show that Cu<sub>2</sub>Se tunes the GeTe crystal structure and carrier concentration to achieve promising enhancements to the thermoelectric performance. Meanwhile, a herringbone-like crystal structure that reduces the lattice thermal conductivity was observed. However, because the directional movement of Cu ions at high temperatures leads to an increase in electrical conductivity, the electronic thermal conductivity also increased. This study focuses on crystal engineering strategies for the study of nontoxic thermoelectric materials.</p>\",\"PeriodicalId\":8,\"journal\":{\"name\":\"ACS Biomaterials Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Biomaterials Science & Engineering\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.2c21002\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.2c21002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

碲化锗(GeTe)化合物具有优异的热电性能。本研究采用硒化铜(Cu2Se)调控GeTe材料的晶体结构和载流子浓度(nH)。1% cu2se掺杂的GeTe样品zT达到1.32,比纯相提高了52%。结果表明,Cu2Se可以调节GeTe的晶体结构和载流子浓度,从而提高热电性能。同时,观察到一个人字骨状的晶体结构,降低了晶格热导率。然而,由于Cu离子在高温下的定向运动导致电导率的增加,电子导热系数也随之增加。本研究的重点是研究无毒热电材料的晶体工程策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Doping Copper Selenide for Tuning the Crystal Structure and Thermoelectric Performance of Germanium Telluride-Based Materials

Germanium telluride (GeTe) compounds exhibit excellent thermoelectric performance. In this study, copper selenide (Cu2Se) was used to tune the crystal structure and carrier concentration (nH) of GeTe materials. The zT of the 1% Cu2Se-doped GeTe sample reaches 1.32, which is 52% higher than that of the pure phase. The results show that Cu2Se tunes the GeTe crystal structure and carrier concentration to achieve promising enhancements to the thermoelectric performance. Meanwhile, a herringbone-like crystal structure that reduces the lattice thermal conductivity was observed. However, because the directional movement of Cu ions at high temperatures leads to an increase in electrical conductivity, the electronic thermal conductivity also increased. This study focuses on crystal engineering strategies for the study of nontoxic thermoelectric materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1