{"title":"离散混合对数需求下静态定价问题的精确算法","authors":"Ahmadreza Marandi , Virginie Lurkin","doi":"10.1016/j.ejco.2023.100073","DOIUrl":null,"url":null,"abstract":"<div><p>Price differentiation is a common strategy in many markets. In this paper, we study a static multiproduct price optimization problem with demand given by a discrete mixed multinomial logit model. By considering a mixed logit model that includes customer specific variables and parameters in the utility specification, our pricing problem reflects well the discrete choice models used in practice. To solve this pricing problem, we design an efficient iterative optimization algorithm that asymptotically converges to the optimal solution. To this end, a <em>linear optimization</em> (LO) problem is formulated, based on the trust-region approach, to find a “good” feasible solution and approximate the problem from below. A convex optimization problem is designed using a convexification technique to approximate the optimization problem from above. Then, using a branching method, we tighten the optimality gap. The effectiveness of our algorithm is illustrated on several cases, and compared against solvers and existing state-of-the-art methods in the literature.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"11 ","pages":"Article 100073"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An exact algorithm for the static pricing problem under discrete mixed logit demand\",\"authors\":\"Ahmadreza Marandi , Virginie Lurkin\",\"doi\":\"10.1016/j.ejco.2023.100073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Price differentiation is a common strategy in many markets. In this paper, we study a static multiproduct price optimization problem with demand given by a discrete mixed multinomial logit model. By considering a mixed logit model that includes customer specific variables and parameters in the utility specification, our pricing problem reflects well the discrete choice models used in practice. To solve this pricing problem, we design an efficient iterative optimization algorithm that asymptotically converges to the optimal solution. To this end, a <em>linear optimization</em> (LO) problem is formulated, based on the trust-region approach, to find a “good” feasible solution and approximate the problem from below. A convex optimization problem is designed using a convexification technique to approximate the optimization problem from above. Then, using a branching method, we tighten the optimality gap. The effectiveness of our algorithm is illustrated on several cases, and compared against solvers and existing state-of-the-art methods in the literature.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"11 \",\"pages\":\"Article 100073\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440623000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440623000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
An exact algorithm for the static pricing problem under discrete mixed logit demand
Price differentiation is a common strategy in many markets. In this paper, we study a static multiproduct price optimization problem with demand given by a discrete mixed multinomial logit model. By considering a mixed logit model that includes customer specific variables and parameters in the utility specification, our pricing problem reflects well the discrete choice models used in practice. To solve this pricing problem, we design an efficient iterative optimization algorithm that asymptotically converges to the optimal solution. To this end, a linear optimization (LO) problem is formulated, based on the trust-region approach, to find a “good” feasible solution and approximate the problem from below. A convex optimization problem is designed using a convexification technique to approximate the optimization problem from above. Then, using a branching method, we tighten the optimality gap. The effectiveness of our algorithm is illustrated on several cases, and compared against solvers and existing state-of-the-art methods in the literature.
期刊介绍:
The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.