工业玻璃窑炉系统部件内部流动结构的数值预测

C. Cravero, D. De Domenico, F. Kenfack, Philippe J. Leutcha
{"title":"工业玻璃窑炉系统部件内部流动结构的数值预测","authors":"C. Cravero, D. De Domenico, F. Kenfack, Philippe J. Leutcha","doi":"10.37394/232013.2020.15.11","DOIUrl":null,"url":null,"abstract":"An important aspect in the glass production industry is related to the heat recovery of the combustion gases. It is usually obtained throughout the use of well-tested technologies, such as regenerative towers with refractory material. For an effective heat recovery, a good distribution of the flow rate at the entrance of the chambers is crucial. The use of Computational Fluid Dynamics (CFD) allows the detailed analysis of the gas evolution during the process; the same would be impractical with experimental measurements, due to prohibitive ambient local conditions. The CFD approach during the design phase typically considers CAD geometries without the level of details related to technological features of the actual installed configuration (i.e. sharp edges vs rounded edges). A brand new built furnace has blunt edges in every connection between 3D walls of refractory blocks. The above edges will be rounded by the erosion-corrosion process due to the harsh chemical/mechanical/thermal environmental conditions inside the plant components (i.e. regenerative chambers, connecting ducts, furnace). The purpose of this work is to evaluate the influence of the geometrical details of the CAD (with focus on the edges connecting adjacent walls), due to technological or erosion aspects, on the flow structure in the furnace components.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Numerical Prediction of the Flow Structure Inside Components of Industrial Glass Furnace Systems\",\"authors\":\"C. Cravero, D. De Domenico, F. Kenfack, Philippe J. Leutcha\",\"doi\":\"10.37394/232013.2020.15.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An important aspect in the glass production industry is related to the heat recovery of the combustion gases. It is usually obtained throughout the use of well-tested technologies, such as regenerative towers with refractory material. For an effective heat recovery, a good distribution of the flow rate at the entrance of the chambers is crucial. The use of Computational Fluid Dynamics (CFD) allows the detailed analysis of the gas evolution during the process; the same would be impractical with experimental measurements, due to prohibitive ambient local conditions. The CFD approach during the design phase typically considers CAD geometries without the level of details related to technological features of the actual installed configuration (i.e. sharp edges vs rounded edges). A brand new built furnace has blunt edges in every connection between 3D walls of refractory blocks. The above edges will be rounded by the erosion-corrosion process due to the harsh chemical/mechanical/thermal environmental conditions inside the plant components (i.e. regenerative chambers, connecting ducts, furnace). The purpose of this work is to evaluate the influence of the geometrical details of the CAD (with focus on the edges connecting adjacent walls), due to technological or erosion aspects, on the flow structure in the furnace components.\",\"PeriodicalId\":39418,\"journal\":{\"name\":\"WSEAS Transactions on Fluid Mechanics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WSEAS Transactions on Fluid Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37394/232013.2020.15.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2020.15.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

玻璃生产工业中的一个重要方面与燃烧气体的热回收有关。它通常是通过使用经过良好测试的技术获得的,例如使用耐火材料的再生塔。为了实现有效的热回收,腔室入口流量的良好分布至关重要。使用计算流体动力学(CFD)可以详细分析过程中的气体演化;由于当地环境条件的限制,同样的方法在实验测量中是不切实际的。设计阶段的CFD方法通常考虑CAD几何形状,而不考虑与实际安装配置的技术特征相关的细节水平(即锐边与圆边)。全新建造的熔炉在耐火砌块的3D壁之间的每个连接处都有钝边。由于工厂组件(即再生室、连接管道、熔炉)内部恶劣的化学/机械/热环境条件,上述边缘将在侵蚀-腐蚀过程中变得圆润。这项工作的目的是评估CAD的几何细节的影响(重点是连接相邻墙壁的边缘),由于技术或侵蚀方面,对炉组件的流动结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical Prediction of the Flow Structure Inside Components of Industrial Glass Furnace Systems
An important aspect in the glass production industry is related to the heat recovery of the combustion gases. It is usually obtained throughout the use of well-tested technologies, such as regenerative towers with refractory material. For an effective heat recovery, a good distribution of the flow rate at the entrance of the chambers is crucial. The use of Computational Fluid Dynamics (CFD) allows the detailed analysis of the gas evolution during the process; the same would be impractical with experimental measurements, due to prohibitive ambient local conditions. The CFD approach during the design phase typically considers CAD geometries without the level of details related to technological features of the actual installed configuration (i.e. sharp edges vs rounded edges). A brand new built furnace has blunt edges in every connection between 3D walls of refractory blocks. The above edges will be rounded by the erosion-corrosion process due to the harsh chemical/mechanical/thermal environmental conditions inside the plant components (i.e. regenerative chambers, connecting ducts, furnace). The purpose of this work is to evaluate the influence of the geometrical details of the CAD (with focus on the edges connecting adjacent walls), due to technological or erosion aspects, on the flow structure in the furnace components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
WSEAS Transactions on Fluid Mechanics
WSEAS Transactions on Fluid Mechanics Engineering-Computational Mechanics
CiteScore
1.50
自引率
0.00%
发文量
20
期刊介绍: WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.
期刊最新文献
Wind Velocity Effect on the Aerodynamic and Acoustic Behavior of a Vertical Axis Wind Turbine Aerodynamics Analysis Comparison between NACA 4412 and NREL S823 Airfoils Influence of Chemical and Radiation on an Unsteady MHD Oscillatory Flow using Artificial Neural Network (ANN) Non-Fourier Heat Flux Model for the Magnetohydrodynamic Casson Nanofluid Flow Past a Porous Stretching Sheet using the Akbari-Gangi Method Suspended Mooring Line Static Analysis using Internal XFlow Capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1