利用城市自适应聚类框架发现不同粒度的旅游推荐兴趣点

IF 0.8 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Acta Informatica Pragensia Pub Date : 2021-10-23 DOI:10.18267/j.aip.161
Junjie Sun, T. Kinoue, Qiang Ma
{"title":"利用城市自适应聚类框架发现不同粒度的旅游推荐兴趣点","authors":"Junjie Sun, T. Kinoue, Qiang Ma","doi":"10.18267/j.aip.161","DOIUrl":null,"url":null,"abstract":"Increasing demand for personalized tours for tourists travel in an urban area motivates more attention to points of interest (POI) and tour recommendation services. Recently, the granularity of POI has been discussed to provide more detailed information for tour planning, which supports both inside and outside routes that would improve tourists' travel experience. Such tour recommendation systems require a predefined POI database with different granularities, but existing POI discovery methods do not consider the granularity of POI well and treat all POIs as the same scale. On the other hand, the parameters also need to be tuned for different cities, which is not a trivial process. To this end, we propose a city adaptive clustering framework for discovering POIs with different granularities in this article. Our proposed method takes advantage of two clustering algorithms and is adaptive to different cities due to automatic identification of suitable parameters for different datasets. Experiments on two real-world social image datasets reveal the effectiveness of our proposed framework. Finally, the discovered POIs with two levels of granularity are successfully applied on inner and outside tour planning.","PeriodicalId":36592,"journal":{"name":"Acta Informatica Pragensia","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2021-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of Points of Interest with Different Granularities for Tour Recommendation Using a City Adaptive Clustering Framework\",\"authors\":\"Junjie Sun, T. Kinoue, Qiang Ma\",\"doi\":\"10.18267/j.aip.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increasing demand for personalized tours for tourists travel in an urban area motivates more attention to points of interest (POI) and tour recommendation services. Recently, the granularity of POI has been discussed to provide more detailed information for tour planning, which supports both inside and outside routes that would improve tourists' travel experience. Such tour recommendation systems require a predefined POI database with different granularities, but existing POI discovery methods do not consider the granularity of POI well and treat all POIs as the same scale. On the other hand, the parameters also need to be tuned for different cities, which is not a trivial process. To this end, we propose a city adaptive clustering framework for discovering POIs with different granularities in this article. Our proposed method takes advantage of two clustering algorithms and is adaptive to different cities due to automatic identification of suitable parameters for different datasets. Experiments on two real-world social image datasets reveal the effectiveness of our proposed framework. Finally, the discovered POIs with two levels of granularity are successfully applied on inner and outside tour planning.\",\"PeriodicalId\":36592,\"journal\":{\"name\":\"Acta Informatica Pragensia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Informatica Pragensia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18267/j.aip.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Informatica Pragensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18267/j.aip.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

游客在城市地区旅行对个性化旅游的需求不断增加,促使人们更加关注兴趣点(POI)和旅游推荐服务。最近,人们讨论了POI的粒度,以为旅游规划提供更详细的信息,该信息支持内部和外部路线,从而改善游客的旅行体验。这样的旅游推荐系统需要具有不同粒度的预定义POI数据库,但是现有的POI发现方法没有很好地考虑POI的粒度并且将所有POI视为相同的规模。另一方面,还需要针对不同的城市调整参数,这不是一个微不足道的过程。为此,我们在本文中提出了一个城市自适应聚类框架,用于发现具有不同粒度的POI。我们提出的方法利用了两种聚类算法,由于可以自动识别不同数据集的合适参数,因此适用于不同的城市。在两个真实世界的社会图像数据集上的实验表明了我们提出的框架的有效性。最后,将所发现的具有两个粒度级别的POI成功地应用于内部和外部旅游规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovery of Points of Interest with Different Granularities for Tour Recommendation Using a City Adaptive Clustering Framework
Increasing demand for personalized tours for tourists travel in an urban area motivates more attention to points of interest (POI) and tour recommendation services. Recently, the granularity of POI has been discussed to provide more detailed information for tour planning, which supports both inside and outside routes that would improve tourists' travel experience. Such tour recommendation systems require a predefined POI database with different granularities, but existing POI discovery methods do not consider the granularity of POI well and treat all POIs as the same scale. On the other hand, the parameters also need to be tuned for different cities, which is not a trivial process. To this end, we propose a city adaptive clustering framework for discovering POIs with different granularities in this article. Our proposed method takes advantage of two clustering algorithms and is adaptive to different cities due to automatic identification of suitable parameters for different datasets. Experiments on two real-world social image datasets reveal the effectiveness of our proposed framework. Finally, the discovered POIs with two levels of granularity are successfully applied on inner and outside tour planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Informatica Pragensia
Acta Informatica Pragensia Social Sciences-Library and Information Sciences
CiteScore
1.70
自引率
0.00%
发文量
26
审稿时长
12 weeks
期刊最新文献
Visualisation of User Stories in UML Models: A Systematic Literature Review Safe Haven for Asian Equity Markets During Financial Distress: Bitcoin Versus Gold Consumer Behaviour in Gamified Environment: A Bibliometric and Systematic Literature Review in Business and Management Area Impact of Women Driving Rights on Adoption and Usage of E-hailing Applications in Saudi Arabia Use of Data Mining for Analysis of Czech Real Estate Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1