{"title":"利用三种土壤磷提取方法和尼日利亚卡诺州的田间试验,在苏丹稀树草原土壤上建立番茄(番茄)施用磷肥的磷临界值","authors":"Yahaya Mohammad Yusuf, D. K. Madukwe, F. Kebede","doi":"10.3389/fagro.2023.1181045","DOIUrl":null,"url":null,"abstract":"Phosphorus (P) is an essential nutrient for tomato (Solanum lycopersicum L.) production, as it stimulates root growth by improving water use efficiency and nutrient uptake. It also helps control the metabolic processes of ATP (energy), sugars, and nucleic acids. Therefore, it is imperative to effectively manage the phosphorus requirements of tomatoes to bolster their productivity. The objective of this study was to evaluate the effectiveness of three different soil P testing methods that are suitable for the soils of Kano State, Nigeria, and to develop a critical P-value for fertilizer recommendations for tomatoes. Accordingly, sixty topsoil samples were collected for soil available P testing according to the Bray II, Mehlich 3, and Olsen methods. Moreover, to establish the phosphorus critical value (Pc) for tomatoes, a field experiment was conducted with seven different rates of P using triple super phosphate fertilizer (TSP), viz., 0, 15, 30, 45, 60, 75, and 90 kg P/ha, laid out in a randomized complete block design with three replications on 15 experimental sites representing the various agroecological zones of the state. Phosphorus fertilizer was applied and incorporated into the soil 1 week before tomato transplanting. Then, soil samples from 0 to 20 cm depth were taken 3 weeks after transplanting from all the plots across the experimental sites for separate Mehlich 3, Bray II, and Olsen extractable P analysis to determine the critical soil P (Pc) test. The study revealed that available P was varied and increased in the order of Olsen (2.19 ppm)< Mehlich 3 (5.37 ppm)< Bray II (5.44 ppm), and the Mehlich 3 and Bray II extraction methods were strongly correlated, whereas Olsen underestimated the available P, showing a weak correlation with both Mehlich 3 and Bray II. Furthermore, the study showed that phosphorus critical (Pc) values were 17.00, 14.00, and 4 ppm for Mehlich 3, Bray II, and Olsen respectively. Finally, Bray II was a more reliable method for estimating the available P on moderately acid soils as it showed the highest correlation r = 0.83 with the relative yield of the tomatoes and, therefore, was the most effective method for developing the equation for the soil test-based phosphatic fertilizer recommendation for maximizing tomato production in the soils of Kano State. Hence, the equation developed for the P fertilizer recommendation (Pr) for tomatoes in Kano State was found to be “Pr (kg P2O5 ha−1) = (14.0 − Pi) × 9.02”.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing phosphorus critical values for tomato (Solanum lycopersicum) fertilization with phosphate fertilizers on the Sudan savanna soils using three soil phosphorus extraction methods and field experimentation in Kano State, Nigeria\",\"authors\":\"Yahaya Mohammad Yusuf, D. K. Madukwe, F. Kebede\",\"doi\":\"10.3389/fagro.2023.1181045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphorus (P) is an essential nutrient for tomato (Solanum lycopersicum L.) production, as it stimulates root growth by improving water use efficiency and nutrient uptake. It also helps control the metabolic processes of ATP (energy), sugars, and nucleic acids. Therefore, it is imperative to effectively manage the phosphorus requirements of tomatoes to bolster their productivity. The objective of this study was to evaluate the effectiveness of three different soil P testing methods that are suitable for the soils of Kano State, Nigeria, and to develop a critical P-value for fertilizer recommendations for tomatoes. Accordingly, sixty topsoil samples were collected for soil available P testing according to the Bray II, Mehlich 3, and Olsen methods. Moreover, to establish the phosphorus critical value (Pc) for tomatoes, a field experiment was conducted with seven different rates of P using triple super phosphate fertilizer (TSP), viz., 0, 15, 30, 45, 60, 75, and 90 kg P/ha, laid out in a randomized complete block design with three replications on 15 experimental sites representing the various agroecological zones of the state. Phosphorus fertilizer was applied and incorporated into the soil 1 week before tomato transplanting. Then, soil samples from 0 to 20 cm depth were taken 3 weeks after transplanting from all the plots across the experimental sites for separate Mehlich 3, Bray II, and Olsen extractable P analysis to determine the critical soil P (Pc) test. The study revealed that available P was varied and increased in the order of Olsen (2.19 ppm)< Mehlich 3 (5.37 ppm)< Bray II (5.44 ppm), and the Mehlich 3 and Bray II extraction methods were strongly correlated, whereas Olsen underestimated the available P, showing a weak correlation with both Mehlich 3 and Bray II. Furthermore, the study showed that phosphorus critical (Pc) values were 17.00, 14.00, and 4 ppm for Mehlich 3, Bray II, and Olsen respectively. Finally, Bray II was a more reliable method for estimating the available P on moderately acid soils as it showed the highest correlation r = 0.83 with the relative yield of the tomatoes and, therefore, was the most effective method for developing the equation for the soil test-based phosphatic fertilizer recommendation for maximizing tomato production in the soils of Kano State. Hence, the equation developed for the P fertilizer recommendation (Pr) for tomatoes in Kano State was found to be “Pr (kg P2O5 ha−1) = (14.0 − Pi) × 9.02”.\",\"PeriodicalId\":34038,\"journal\":{\"name\":\"Frontiers in Agronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fagro.2023.1181045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fagro.2023.1181045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
摘要
磷(P)是番茄(Solanum lycopersicum L.)生产的必需营养素,因为它通过提高水分利用效率和养分吸收来刺激根系生长。它还有助于控制ATP(能量)、糖和核酸的代谢过程。因此,必须有效管理番茄的磷需求,以提高其生产力。本研究的目的是评估适用于尼日利亚卡诺州土壤的三种不同土壤磷测试方法的有效性,并制定番茄肥料推荐的临界磷值。因此,根据Bray II、Mehlich 3和Olsen方法,收集了60个表层土样本用于土壤有效磷测试。此外,为了确定番茄的磷临界值(Pc),在代表该州不同农业生态区的15个试验点上进行了三重超磷酸盐(TSP)田间试验,用7种不同的磷率,即0、15、30、45、60、75和90 kg P/ha,以随机完全区组设计进行了三次重复。在番茄移植前1周施用磷肥并将其掺入土壤中。然后,在移植后3周,从实验地点的所有地块中采集0至20cm深度的土壤样本,分别进行Mehlich 3、Bray II和Olsen可提取磷分析,以确定临界土壤磷(Pc)测试。研究表明,有效磷的变化和增加顺序为Olsen(2.19 ppm)本文章由计算机程序翻译,如有差异,请以英文原文为准。
Establishing phosphorus critical values for tomato (Solanum lycopersicum) fertilization with phosphate fertilizers on the Sudan savanna soils using three soil phosphorus extraction methods and field experimentation in Kano State, Nigeria
Phosphorus (P) is an essential nutrient for tomato (Solanum lycopersicum L.) production, as it stimulates root growth by improving water use efficiency and nutrient uptake. It also helps control the metabolic processes of ATP (energy), sugars, and nucleic acids. Therefore, it is imperative to effectively manage the phosphorus requirements of tomatoes to bolster their productivity. The objective of this study was to evaluate the effectiveness of three different soil P testing methods that are suitable for the soils of Kano State, Nigeria, and to develop a critical P-value for fertilizer recommendations for tomatoes. Accordingly, sixty topsoil samples were collected for soil available P testing according to the Bray II, Mehlich 3, and Olsen methods. Moreover, to establish the phosphorus critical value (Pc) for tomatoes, a field experiment was conducted with seven different rates of P using triple super phosphate fertilizer (TSP), viz., 0, 15, 30, 45, 60, 75, and 90 kg P/ha, laid out in a randomized complete block design with three replications on 15 experimental sites representing the various agroecological zones of the state. Phosphorus fertilizer was applied and incorporated into the soil 1 week before tomato transplanting. Then, soil samples from 0 to 20 cm depth were taken 3 weeks after transplanting from all the plots across the experimental sites for separate Mehlich 3, Bray II, and Olsen extractable P analysis to determine the critical soil P (Pc) test. The study revealed that available P was varied and increased in the order of Olsen (2.19 ppm)< Mehlich 3 (5.37 ppm)< Bray II (5.44 ppm), and the Mehlich 3 and Bray II extraction methods were strongly correlated, whereas Olsen underestimated the available P, showing a weak correlation with both Mehlich 3 and Bray II. Furthermore, the study showed that phosphorus critical (Pc) values were 17.00, 14.00, and 4 ppm for Mehlich 3, Bray II, and Olsen respectively. Finally, Bray II was a more reliable method for estimating the available P on moderately acid soils as it showed the highest correlation r = 0.83 with the relative yield of the tomatoes and, therefore, was the most effective method for developing the equation for the soil test-based phosphatic fertilizer recommendation for maximizing tomato production in the soils of Kano State. Hence, the equation developed for the P fertilizer recommendation (Pr) for tomatoes in Kano State was found to be “Pr (kg P2O5 ha−1) = (14.0 − Pi) × 9.02”.