{"title":"自愈介质聚合物中电降解与愈合的竞争关系","authors":"Lu Han, Jiaye Xie, Qi Li, Jinliang He","doi":"10.1049/nde2.12056","DOIUrl":null,"url":null,"abstract":"<p>The concept of self-healing dielectric polymers has been heatedly discussed, with the expectation of high damage resistance and longer service time. However, there is still a lack of analysis on the competitive relationship between electrical degradation and self-healing. The authors discussed this relationship in two stages: the design of self-healing strategies and the operation of self-healing polymers. Since the requirements for excellent insulating or mechanical properties are not consistent with the demands for high self-healing capability, trade-offs are necessary during the design of self-healing polymeric systems. In the operation stage of dielectric polymers, some key factors that affect the service lifetime of non-autonomous self-healing dielectric polymers are analysed, including the efficiency and repeatability of self-healing, and the frequency of healing maintenance. For autonomous self-healing dielectrics, the simultaneous processes of ageing and healing are investigated using a self-healing epoxy resin based on microcapsules and <i>in situ</i>-generated radicals. A quicker recovery of insulating properties, in terms of partial discharge magnitude, was observed under appropriate healing voltages. However, the self-healing ability might vanish when the voltage was too high, verifying the competitive relationship between electrical degradation and self-healing.</p>","PeriodicalId":36855,"journal":{"name":"IET Nanodielectrics","volume":"6 4","pages":"231-236"},"PeriodicalIF":3.8000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12056","citationCount":"0","resultStr":"{\"title\":\"Competitive relationship between electrical degradation and healing in self-healing dielectric polymers\",\"authors\":\"Lu Han, Jiaye Xie, Qi Li, Jinliang He\",\"doi\":\"10.1049/nde2.12056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of self-healing dielectric polymers has been heatedly discussed, with the expectation of high damage resistance and longer service time. However, there is still a lack of analysis on the competitive relationship between electrical degradation and self-healing. The authors discussed this relationship in two stages: the design of self-healing strategies and the operation of self-healing polymers. Since the requirements for excellent insulating or mechanical properties are not consistent with the demands for high self-healing capability, trade-offs are necessary during the design of self-healing polymeric systems. In the operation stage of dielectric polymers, some key factors that affect the service lifetime of non-autonomous self-healing dielectric polymers are analysed, including the efficiency and repeatability of self-healing, and the frequency of healing maintenance. For autonomous self-healing dielectrics, the simultaneous processes of ageing and healing are investigated using a self-healing epoxy resin based on microcapsules and <i>in situ</i>-generated radicals. A quicker recovery of insulating properties, in terms of partial discharge magnitude, was observed under appropriate healing voltages. However, the self-healing ability might vanish when the voltage was too high, verifying the competitive relationship between electrical degradation and self-healing.</p>\",\"PeriodicalId\":36855,\"journal\":{\"name\":\"IET Nanodielectrics\",\"volume\":\"6 4\",\"pages\":\"231-236\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nde2.12056\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Nanodielectrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Nanodielectrics","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nde2.12056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Competitive relationship between electrical degradation and healing in self-healing dielectric polymers
The concept of self-healing dielectric polymers has been heatedly discussed, with the expectation of high damage resistance and longer service time. However, there is still a lack of analysis on the competitive relationship between electrical degradation and self-healing. The authors discussed this relationship in two stages: the design of self-healing strategies and the operation of self-healing polymers. Since the requirements for excellent insulating or mechanical properties are not consistent with the demands for high self-healing capability, trade-offs are necessary during the design of self-healing polymeric systems. In the operation stage of dielectric polymers, some key factors that affect the service lifetime of non-autonomous self-healing dielectric polymers are analysed, including the efficiency and repeatability of self-healing, and the frequency of healing maintenance. For autonomous self-healing dielectrics, the simultaneous processes of ageing and healing are investigated using a self-healing epoxy resin based on microcapsules and in situ-generated radicals. A quicker recovery of insulating properties, in terms of partial discharge magnitude, was observed under appropriate healing voltages. However, the self-healing ability might vanish when the voltage was too high, verifying the competitive relationship between electrical degradation and self-healing.