由瞬时单位水线导出的NRCS曲线数方程:若干结论

IF 3.1 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Hydrology X Pub Date : 2023-05-01 DOI:10.1016/j.hydroa.2023.100151
Klaas Metselaar
{"title":"由瞬时单位水线导出的NRCS曲线数方程:若干结论","authors":"Klaas Metselaar","doi":"10.1016/j.hydroa.2023.100151","DOIUrl":null,"url":null,"abstract":"<div><p>The NCRS-curve number equation allows calculating the storm runoff from a rainfall event for specific types of land use. It was based on an analysis of direct runoff data using baseflow corrected hydrographs and rainfall. Given this basis, the curve number equation can be derived assuming a constant effective rainfall intensity and a cubic reciprocal function as the instantaneous unit hydrograph. The instantaneous unit hydrograph and the resulting curve number equation are further generalized by adding a lag time. The equation for a curve number related hydrograph is presented, allowing to fit this curve number-based hydrograph to event data. The curve number itself is shown be a function of a catchment response time and the average event rainfall intensity. As the catchment response time is linked to the time of concentration the curve number equation and the storage index can be linked to catchment- and flow type characteristics. First results suggest that including the rainfall intensity duration frequency function in the curve number equation may explain systematic deviations observed when fitting the NCRS curve number equation to measured data.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":"19 ","pages":"Article 100151"},"PeriodicalIF":3.1000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The NRCS curve number equation derived from an instantaneous unit hydrograph: Some consequences\",\"authors\":\"Klaas Metselaar\",\"doi\":\"10.1016/j.hydroa.2023.100151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The NCRS-curve number equation allows calculating the storm runoff from a rainfall event for specific types of land use. It was based on an analysis of direct runoff data using baseflow corrected hydrographs and rainfall. Given this basis, the curve number equation can be derived assuming a constant effective rainfall intensity and a cubic reciprocal function as the instantaneous unit hydrograph. The instantaneous unit hydrograph and the resulting curve number equation are further generalized by adding a lag time. The equation for a curve number related hydrograph is presented, allowing to fit this curve number-based hydrograph to event data. The curve number itself is shown be a function of a catchment response time and the average event rainfall intensity. As the catchment response time is linked to the time of concentration the curve number equation and the storage index can be linked to catchment- and flow type characteristics. First results suggest that including the rainfall intensity duration frequency function in the curve number equation may explain systematic deviations observed when fitting the NCRS curve number equation to measured data.</p></div>\",\"PeriodicalId\":36948,\"journal\":{\"name\":\"Journal of Hydrology X\",\"volume\":\"19 \",\"pages\":\"Article 100151\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589915523000044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915523000044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

ncrs曲线数字方程允许计算特定类型土地使用的降雨事件的暴雨径流。它是基于对直接径流数据的分析,使用基流校正的水文曲线和降雨量。在此基础上,假设有效降雨强度恒定,以三次倒数函数为瞬时单位线线,可导出曲线数方程。通过加入滞后时间,进一步推广了瞬时单位线和由此产生的曲线数方程。给出了与曲线数相关的水线图的方程,使基于曲线数的水线图与事件数据相拟合。曲线数本身是集水区响应时间和平均事件降雨强度的函数。由于集水区响应时间与集水区浓度时间相联系,曲线数方程和蓄水指数可以与集水区和流型特征相联系。首先,在曲线数方程中加入降雨强度持续时间频率函数可以解释NCRS曲线数方程拟合实测数据时所观察到的系统偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The NRCS curve number equation derived from an instantaneous unit hydrograph: Some consequences

The NCRS-curve number equation allows calculating the storm runoff from a rainfall event for specific types of land use. It was based on an analysis of direct runoff data using baseflow corrected hydrographs and rainfall. Given this basis, the curve number equation can be derived assuming a constant effective rainfall intensity and a cubic reciprocal function as the instantaneous unit hydrograph. The instantaneous unit hydrograph and the resulting curve number equation are further generalized by adding a lag time. The equation for a curve number related hydrograph is presented, allowing to fit this curve number-based hydrograph to event data. The curve number itself is shown be a function of a catchment response time and the average event rainfall intensity. As the catchment response time is linked to the time of concentration the curve number equation and the storage index can be linked to catchment- and flow type characteristics. First results suggest that including the rainfall intensity duration frequency function in the curve number equation may explain systematic deviations observed when fitting the NCRS curve number equation to measured data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology X
Journal of Hydrology X Environmental Science-Water Science and Technology
CiteScore
7.00
自引率
2.50%
发文量
20
审稿时长
25 weeks
期刊最新文献
Revisiting model complexity: Space-time correction of high dimensional variable sets in climate model simulations Quantifying the economic value of a national hydrometric network for households Private sensors and crowdsourced rainfall data: Accuracy and potential for modelling pluvial flooding in urban areas of Oslo, Norway A combined data assimilation and deep learning approach for continuous spatio-temporal SWE reconstruction from sparse ground tracks A nonstationary stochastic simulator for clustered regional hydroclimatic extremes to Characterize compound flood risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1