{"title":"紫外光固化相分离涂料中反应驱动的溶剂输运","authors":"M. Yamamura","doi":"10.1007/s11998-022-00661-7","DOIUrl":null,"url":null,"abstract":"<div><p>We experimentally examined the time-evolutions of local compositions in photocurable, monomer-solvent-initiator ternary liquid film coatings using attenuated total-reflectance-Fourier transform infrared spectroscopy. The coatings exhibited phase separation upon UV exposure owing to the inherent partial miscibility between the solvent and the polymer. The solvent concentration at the bottom of the coating increased when exposed to UV light for 1 s from the top, showing a solvent transport along the irradiation direction. The differences in solvent concentration before and after UV exposure showed good agreement with model predictions based on stress-induced non-Fickian solvent mass transport. The solvent concentrations at the bottom remained constant in the case of discrete phase structures, whereas it exponentially decayed over time in bicontinuous phase structures. These results suggest that light-tunable microstructures enable the relaxation of the reaction-driven nonuniformity in solvent concentration distributions.</p></div>","PeriodicalId":48804,"journal":{"name":"Journal of Coatings Technology and Research","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11998-022-00661-7.pdf","citationCount":"2","resultStr":"{\"title\":\"Reaction-driven solvent transport in UV-curable phase-separating coatings\",\"authors\":\"M. Yamamura\",\"doi\":\"10.1007/s11998-022-00661-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We experimentally examined the time-evolutions of local compositions in photocurable, monomer-solvent-initiator ternary liquid film coatings using attenuated total-reflectance-Fourier transform infrared spectroscopy. The coatings exhibited phase separation upon UV exposure owing to the inherent partial miscibility between the solvent and the polymer. The solvent concentration at the bottom of the coating increased when exposed to UV light for 1 s from the top, showing a solvent transport along the irradiation direction. The differences in solvent concentration before and after UV exposure showed good agreement with model predictions based on stress-induced non-Fickian solvent mass transport. The solvent concentrations at the bottom remained constant in the case of discrete phase structures, whereas it exponentially decayed over time in bicontinuous phase structures. These results suggest that light-tunable microstructures enable the relaxation of the reaction-driven nonuniformity in solvent concentration distributions.</p></div>\",\"PeriodicalId\":48804,\"journal\":{\"name\":\"Journal of Coatings Technology and Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11998-022-00661-7.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Coatings Technology and Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11998-022-00661-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Coatings Technology and Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11998-022-00661-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemistry","Score":null,"Total":0}
Reaction-driven solvent transport in UV-curable phase-separating coatings
We experimentally examined the time-evolutions of local compositions in photocurable, monomer-solvent-initiator ternary liquid film coatings using attenuated total-reflectance-Fourier transform infrared spectroscopy. The coatings exhibited phase separation upon UV exposure owing to the inherent partial miscibility between the solvent and the polymer. The solvent concentration at the bottom of the coating increased when exposed to UV light for 1 s from the top, showing a solvent transport along the irradiation direction. The differences in solvent concentration before and after UV exposure showed good agreement with model predictions based on stress-induced non-Fickian solvent mass transport. The solvent concentrations at the bottom remained constant in the case of discrete phase structures, whereas it exponentially decayed over time in bicontinuous phase structures. These results suggest that light-tunable microstructures enable the relaxation of the reaction-driven nonuniformity in solvent concentration distributions.
期刊介绍:
Journal of Coatings Technology and Research (JCTR) is a forum for the exchange of research, experience, knowledge and ideas among those with a professional interest in the science, technology and manufacture of functional, protective and decorative coatings including paints, inks and related coatings and their raw materials, and similar topics.