Elige Salamé, S. Brizzolara, Marta Rodriguez, Matteo Iob, P. Tonutti, B. Ruperti
{"title":"不同缺氧条件下贮藏红鲜苹果乙醇发酵和乙烯生理相关基因表达谱","authors":"Elige Salamé, S. Brizzolara, Marta Rodriguez, Matteo Iob, P. Tonutti, B. Ruperti","doi":"10.36253/ahsc-14180","DOIUrl":null,"url":null,"abstract":"Dynamic Controlled Atmosphere (DCA) is beneficial in maintaining specific quality parameters but, due to the extreme oxygen levels applied, can cause adverse effects on the fruit by inducing excessive anaerobic metabolism and the production of off-flavors. The metabolic adaptation and responses of apples (Malus domestica Borkh.) cv. Red Delicious to static or dynamic oxygen concentrations (0.3 and 0.8%, with sequential shifts) during cold storage for 7 months were studied by monitoring quality parameters and the expression of genes involved in sugar, fermentative metabolism, and ethylene physiology. Ethanol content reached the highest levels (around 400 mg/kg FW) under 0.3% oxygen concentration and fruit firmness appeared to be reduced in samples accumulating the highest levels of ethanol. Oxygen switch was effective in reducing the ethanol concentrations with timing-dependent variable effects. The expression of fermentative (alcohol dehydrogenase, lactate dehydrogenase, pyruvate decarboxylase) and sugar metabolism (β-amylase; phosphofructokinase; sucrose synthase) genes resulted to be differently affected by the hypoxic conditions imposed, in particular during the early stages of storage. Sucrose synthase expression appeared to be highly sensitive to changes in low oxygen concentration. Ethylene biosynthesis (ACC synthase and oxidase) genes showed marked differences in their expression in relation to the static and dynamic protocols and the hypoxic conditions, as well as six Ethylene Responsive Factors (ERF) genes, some of them possibly involved in the oxygen sensing mechanism operating in fruit tissues.","PeriodicalId":7339,"journal":{"name":"Advances in horticultural science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethanol fermentation- and ethylene physiology-related gene expression profiles in Red Delicious apples stored under variable hypoxic conditions and protocols\",\"authors\":\"Elige Salamé, S. Brizzolara, Marta Rodriguez, Matteo Iob, P. Tonutti, B. Ruperti\",\"doi\":\"10.36253/ahsc-14180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic Controlled Atmosphere (DCA) is beneficial in maintaining specific quality parameters but, due to the extreme oxygen levels applied, can cause adverse effects on the fruit by inducing excessive anaerobic metabolism and the production of off-flavors. The metabolic adaptation and responses of apples (Malus domestica Borkh.) cv. Red Delicious to static or dynamic oxygen concentrations (0.3 and 0.8%, with sequential shifts) during cold storage for 7 months were studied by monitoring quality parameters and the expression of genes involved in sugar, fermentative metabolism, and ethylene physiology. Ethanol content reached the highest levels (around 400 mg/kg FW) under 0.3% oxygen concentration and fruit firmness appeared to be reduced in samples accumulating the highest levels of ethanol. Oxygen switch was effective in reducing the ethanol concentrations with timing-dependent variable effects. The expression of fermentative (alcohol dehydrogenase, lactate dehydrogenase, pyruvate decarboxylase) and sugar metabolism (β-amylase; phosphofructokinase; sucrose synthase) genes resulted to be differently affected by the hypoxic conditions imposed, in particular during the early stages of storage. Sucrose synthase expression appeared to be highly sensitive to changes in low oxygen concentration. Ethylene biosynthesis (ACC synthase and oxidase) genes showed marked differences in their expression in relation to the static and dynamic protocols and the hypoxic conditions, as well as six Ethylene Responsive Factors (ERF) genes, some of them possibly involved in the oxygen sensing mechanism operating in fruit tissues.\",\"PeriodicalId\":7339,\"journal\":{\"name\":\"Advances in horticultural science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in horticultural science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36253/ahsc-14180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in horticultural science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36253/ahsc-14180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Ethanol fermentation- and ethylene physiology-related gene expression profiles in Red Delicious apples stored under variable hypoxic conditions and protocols
Dynamic Controlled Atmosphere (DCA) is beneficial in maintaining specific quality parameters but, due to the extreme oxygen levels applied, can cause adverse effects on the fruit by inducing excessive anaerobic metabolism and the production of off-flavors. The metabolic adaptation and responses of apples (Malus domestica Borkh.) cv. Red Delicious to static or dynamic oxygen concentrations (0.3 and 0.8%, with sequential shifts) during cold storage for 7 months were studied by monitoring quality parameters and the expression of genes involved in sugar, fermentative metabolism, and ethylene physiology. Ethanol content reached the highest levels (around 400 mg/kg FW) under 0.3% oxygen concentration and fruit firmness appeared to be reduced in samples accumulating the highest levels of ethanol. Oxygen switch was effective in reducing the ethanol concentrations with timing-dependent variable effects. The expression of fermentative (alcohol dehydrogenase, lactate dehydrogenase, pyruvate decarboxylase) and sugar metabolism (β-amylase; phosphofructokinase; sucrose synthase) genes resulted to be differently affected by the hypoxic conditions imposed, in particular during the early stages of storage. Sucrose synthase expression appeared to be highly sensitive to changes in low oxygen concentration. Ethylene biosynthesis (ACC synthase and oxidase) genes showed marked differences in their expression in relation to the static and dynamic protocols and the hypoxic conditions, as well as six Ethylene Responsive Factors (ERF) genes, some of them possibly involved in the oxygen sensing mechanism operating in fruit tissues.
期刊介绍:
Advances in Horticultural Science aims to provide a forum for original investigations in horticulture, viticulture and oliviculture. The journal publishes fully refereed papers which cover applied and theoretical approaches to the most recent studies of all areas of horticulture - fruit growing, vegetable growing, viticulture, floriculture, medicinal plants, ornamental gardening, garden and landscape architecture, in temperate, subtropical and tropical regions. Papers on horticultural aspects of agronomic, breeding, biotechnology, entomology, irrigation and plant stress physiology, plant nutrition, plant protection, plant pathology, and pre and post harvest physiology, are also welcomed. The journal scope is the promotion of a sustainable increase of the quantity and quality of horticultural products and the transfer of the new knowledge in the field. Papers should report original research, should be methodologically sound and of relevance to the international scientific community. AHS publishes three types of manuscripts: Full-length - short note - review papers. Papers are published in English.