{"title":"依赖荷载路径的FLM-FRP轻型结构的系统开发","authors":"Harald Voelkl, S. Wartzack","doi":"10.1017/dsj.2021.9","DOIUrl":null,"url":null,"abstract":"Abstract Additive manufacturing offers a high degree of design freedom. When Design for Additive Manufacturing is conducted properly, lightweight potential can be exploited. This contribution introduces a novel design approach for the widespread fused layer modelling (FLM) technology when using orthotropic Fibre Reinforced Polymer filament. Its objective is to obtain stiff and strong load-path optimized FLM structures in a structured and algorithmic way. The approach therefore encompasses (1) build orientation optimization to consider weaker bonding between layers than intralayer; (2) topology optimization with orthotropic material properties to obtain favourable overall geometry and inner structure; (3) direct build path generation from optimized material orientation and alternatives to the direct generation and (4) simulation. The approach is demonstrated using a lift arm under multiple load cases and further demonstrator parts to show its general applicability. Lightweight potential of individual optimization steps and the influence of modifications contrasting general non-FLM-specific optimization are studied and discussed.","PeriodicalId":54146,"journal":{"name":"Design Science","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/dsj.2021.9","citationCount":"1","resultStr":"{\"title\":\"Systematic development of load-path dependent FLM-FRP lightweight structures\",\"authors\":\"Harald Voelkl, S. Wartzack\",\"doi\":\"10.1017/dsj.2021.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Additive manufacturing offers a high degree of design freedom. When Design for Additive Manufacturing is conducted properly, lightweight potential can be exploited. This contribution introduces a novel design approach for the widespread fused layer modelling (FLM) technology when using orthotropic Fibre Reinforced Polymer filament. Its objective is to obtain stiff and strong load-path optimized FLM structures in a structured and algorithmic way. The approach therefore encompasses (1) build orientation optimization to consider weaker bonding between layers than intralayer; (2) topology optimization with orthotropic material properties to obtain favourable overall geometry and inner structure; (3) direct build path generation from optimized material orientation and alternatives to the direct generation and (4) simulation. The approach is demonstrated using a lift arm under multiple load cases and further demonstrator parts to show its general applicability. Lightweight potential of individual optimization steps and the influence of modifications contrasting general non-FLM-specific optimization are studied and discussed.\",\"PeriodicalId\":54146,\"journal\":{\"name\":\"Design Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/dsj.2021.9\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Design Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dsj.2021.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Design Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dsj.2021.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Systematic development of load-path dependent FLM-FRP lightweight structures
Abstract Additive manufacturing offers a high degree of design freedom. When Design for Additive Manufacturing is conducted properly, lightweight potential can be exploited. This contribution introduces a novel design approach for the widespread fused layer modelling (FLM) technology when using orthotropic Fibre Reinforced Polymer filament. Its objective is to obtain stiff and strong load-path optimized FLM structures in a structured and algorithmic way. The approach therefore encompasses (1) build orientation optimization to consider weaker bonding between layers than intralayer; (2) topology optimization with orthotropic material properties to obtain favourable overall geometry and inner structure; (3) direct build path generation from optimized material orientation and alternatives to the direct generation and (4) simulation. The approach is demonstrated using a lift arm under multiple load cases and further demonstrator parts to show its general applicability. Lightweight potential of individual optimization steps and the influence of modifications contrasting general non-FLM-specific optimization are studied and discussed.