{"title":"组合优化问题的一种新型协同多阶段超启发式算法","authors":"Fuqing Zhao;Shilu Di;Jie Cao;Jianxin Tang;Jonrinaldi","doi":"10.23919/CSMS.2021.0010","DOIUrl":null,"url":null,"abstract":"A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address complex problems. A classical hyper-heuristic framework consists of two levels, including the high-level heuristic and a set of low-level heuristics. The low-level heuristics to be used in the optimization process are chosen by the high-level tactics in the hyper-heuristic. In this study, a Cooperative Multi-Stage Hyper-Heuristic (CMS-HH) algorithm is proposed to address certain combinatorial optimization problems. In the CMS-HH, a genetic algorithm is introduced to perturb the initial solution to increase the diversity of the solution. In the search phase, an online learning mechanism based on the multi-armed bandits and relay hybridization technology are proposed to improve the quality of the solution. In addition, a multi-point search is introduced to cooperatively search with a single-point search when the state of the solution does not change in continuous time. The performance of the CMS-HH algorithm is assessed in six specific combinatorial optimization problems, including Boolean satisfiability problems, one-dimensional packing problems, permutation flow-shop scheduling problems, personnel scheduling problems, traveling salesman problems, and vehicle routing problems. The experimental results demonstrate the efficiency and significance of the proposed CMS-HH algorithm.","PeriodicalId":65786,"journal":{"name":"复杂系统建模与仿真(英文)","volume":"1 2","pages":"91-108"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.23919/CSMS.2021.0010","citationCount":"50","resultStr":"{\"title\":\"A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems\",\"authors\":\"Fuqing Zhao;Shilu Di;Jie Cao;Jianxin Tang;Jonrinaldi\",\"doi\":\"10.23919/CSMS.2021.0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address complex problems. A classical hyper-heuristic framework consists of two levels, including the high-level heuristic and a set of low-level heuristics. The low-level heuristics to be used in the optimization process are chosen by the high-level tactics in the hyper-heuristic. In this study, a Cooperative Multi-Stage Hyper-Heuristic (CMS-HH) algorithm is proposed to address certain combinatorial optimization problems. In the CMS-HH, a genetic algorithm is introduced to perturb the initial solution to increase the diversity of the solution. In the search phase, an online learning mechanism based on the multi-armed bandits and relay hybridization technology are proposed to improve the quality of the solution. In addition, a multi-point search is introduced to cooperatively search with a single-point search when the state of the solution does not change in continuous time. The performance of the CMS-HH algorithm is assessed in six specific combinatorial optimization problems, including Boolean satisfiability problems, one-dimensional packing problems, permutation flow-shop scheduling problems, personnel scheduling problems, traveling salesman problems, and vehicle routing problems. The experimental results demonstrate the efficiency and significance of the proposed CMS-HH algorithm.\",\"PeriodicalId\":65786,\"journal\":{\"name\":\"复杂系统建模与仿真(英文)\",\"volume\":\"1 2\",\"pages\":\"91-108\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.23919/CSMS.2021.0010\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"复杂系统建模与仿真(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9502053/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"复杂系统建模与仿真(英文)","FirstCategoryId":"1089","ListUrlMain":"https://ieeexplore.ieee.org/document/9502053/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems
A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address complex problems. A classical hyper-heuristic framework consists of two levels, including the high-level heuristic and a set of low-level heuristics. The low-level heuristics to be used in the optimization process are chosen by the high-level tactics in the hyper-heuristic. In this study, a Cooperative Multi-Stage Hyper-Heuristic (CMS-HH) algorithm is proposed to address certain combinatorial optimization problems. In the CMS-HH, a genetic algorithm is introduced to perturb the initial solution to increase the diversity of the solution. In the search phase, an online learning mechanism based on the multi-armed bandits and relay hybridization technology are proposed to improve the quality of the solution. In addition, a multi-point search is introduced to cooperatively search with a single-point search when the state of the solution does not change in continuous time. The performance of the CMS-HH algorithm is assessed in six specific combinatorial optimization problems, including Boolean satisfiability problems, one-dimensional packing problems, permutation flow-shop scheduling problems, personnel scheduling problems, traveling salesman problems, and vehicle routing problems. The experimental results demonstrate the efficiency and significance of the proposed CMS-HH algorithm.