内部加压钢环爆裂

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL Journal of Pressure Vessel Technology-Transactions of the Asme Pub Date : 2023-04-27 DOI:10.1115/1.4062432
J. Błachut
{"title":"内部加压钢环爆裂","authors":"J. Błachut","doi":"10.1115/1.4062432","DOIUrl":null,"url":null,"abstract":"\n The paper begins with derivation of true stress - true strain data, including post-necking section. Available results of past uni-axial tests on round 10 mm diameter and 200 mm long mild steel samples are the basis of the conversion. The steel in question was used to manufacture ten torispherical domes which were in the past tested for burst. Hence the relevance of matching material model necessary for the FE analyses.\n In the past plastic instability and constraints on the magnitude of plastic strains were postulated as criteria for the burst of internally pressurised torispheres. These criteria for burstpressure are being examined and benchmarked against the tests.\n The current paper, using the FE analyses, shows that modification of constraints on plastic strains has only marginal effect on the burst which still remains on the unsafe side of test data by a sizeable margin. The same is found to be true for plastic instability criterion.\n Subsequent computations moved back to the use of engineering stress-strain. Then two types of computing are carried out here, based on: multi-segment and bilinear modelling of material. Computed results of burst pressure follow the test data to within (-6%, +10%). These results are far better than all the previous.","PeriodicalId":50080,"journal":{"name":"Journal of Pressure Vessel Technology-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Burst of internally Pressurised Steel Torispheres\",\"authors\":\"J. Błachut\",\"doi\":\"10.1115/1.4062432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The paper begins with derivation of true stress - true strain data, including post-necking section. Available results of past uni-axial tests on round 10 mm diameter and 200 mm long mild steel samples are the basis of the conversion. The steel in question was used to manufacture ten torispherical domes which were in the past tested for burst. Hence the relevance of matching material model necessary for the FE analyses.\\n In the past plastic instability and constraints on the magnitude of plastic strains were postulated as criteria for the burst of internally pressurised torispheres. These criteria for burstpressure are being examined and benchmarked against the tests.\\n The current paper, using the FE analyses, shows that modification of constraints on plastic strains has only marginal effect on the burst which still remains on the unsafe side of test data by a sizeable margin. The same is found to be true for plastic instability criterion.\\n Subsequent computations moved back to the use of engineering stress-strain. Then two types of computing are carried out here, based on: multi-segment and bilinear modelling of material. Computed results of burst pressure follow the test data to within (-6%, +10%). These results are far better than all the previous.\",\"PeriodicalId\":50080,\"journal\":{\"name\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pressure Vessel Technology-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062432\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pressure Vessel Technology-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062432","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文首先推导了包括后颈段在内的真应力-真应变数据。过去10毫米直径圆形和200毫米长低碳钢试样的单轴试验结果是转换的基础。有问题的钢材被用来制造10个环形圆顶,这些圆顶在过去进行了爆炸测试。因此,匹配材料模型对有限元分析是必要的。在过去,塑性不稳定性和塑性应变大小的约束被假定为内压环面破裂的准则。这些爆破压力标准正在根据试验进行审查和基准测试。目前的论文,使用有限元分析,表明对塑性应变约束的修改对爆炸只有边际影响,爆炸仍然在测试数据的不安全方面有相当大的余量。对于塑性失稳判据也是如此。随后的计算又回到了使用工程应力-应变法。在此基础上进行了两种计算:基于材料的多段建模和双线性建模。爆破压力计算结果与试验数据一致,在(-6%,+10%)范围内。这些结果比以前的都好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Burst of internally Pressurised Steel Torispheres
The paper begins with derivation of true stress - true strain data, including post-necking section. Available results of past uni-axial tests on round 10 mm diameter and 200 mm long mild steel samples are the basis of the conversion. The steel in question was used to manufacture ten torispherical domes which were in the past tested for burst. Hence the relevance of matching material model necessary for the FE analyses. In the past plastic instability and constraints on the magnitude of plastic strains were postulated as criteria for the burst of internally pressurised torispheres. These criteria for burstpressure are being examined and benchmarked against the tests. The current paper, using the FE analyses, shows that modification of constraints on plastic strains has only marginal effect on the burst which still remains on the unsafe side of test data by a sizeable margin. The same is found to be true for plastic instability criterion. Subsequent computations moved back to the use of engineering stress-strain. Then two types of computing are carried out here, based on: multi-segment and bilinear modelling of material. Computed results of burst pressure follow the test data to within (-6%, +10%). These results are far better than all the previous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
77
审稿时长
4.2 months
期刊介绍: The Journal of Pressure Vessel Technology is the premier publication for the highest-quality research and interpretive reports on the design, analysis, materials, fabrication, construction, inspection, operation, and failure prevention of pressure vessels, piping, pipelines, power and heating boilers, heat exchangers, reaction vessels, pumps, valves, and other pressure and temperature-bearing components, as well as the nondestructive evaluation of critical components in mechanical engineering applications. Not only does the Journal cover all topics dealing with the design and analysis of pressure vessels, piping, and components, but it also contains discussions of their related codes and standards. Applicable pressure technology areas of interest include: Dynamic and seismic analysis; Equipment qualification; Fabrication; Welding processes and integrity; Operation of vessels and piping; Fatigue and fracture prediction; Finite and boundary element methods; Fluid-structure interaction; High pressure engineering; Elevated temperature analysis and design; Inelastic analysis; Life extension; Lifeline earthquake engineering; PVP materials and their property databases; NDE; safety and reliability; Verification and qualification of software.
期刊最新文献
On The Strength And Tightness Of Asme B16.5 And B16.47 Series A Standard Flanges A Re-Evaluation of Rupture Data for CF8C-Plus Austenitic Stainless Steel Mechanical Properties of Buried Steel Pipe With Polyurethane Isolation Layer Under Strike-Slip Fault An Improved Fixture to Quantify Corrosion in Bolted Flanged Gasketed Joints Methods For Estimating Hydrogen Fuel Tank Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1