E. Önem, Firdevs MERT SİVRİ, S. Akkoç, Cennet Çirrik, Aleyna Ezer
{"title":"月桂叶提取物合成氧化锌纳米颗粒及其抑菌活性研究","authors":"E. Önem, Firdevs MERT SİVRİ, S. Akkoç, Cennet Çirrik, Aleyna Ezer","doi":"10.21448/ijsm.1266244","DOIUrl":null,"url":null,"abstract":"Nanotechnology has recently emerged as an essential field of study in modern materials science. The green synthesis of nanoparticles using plant extracts is of great interest because it is cost-effective, eco-friendly, and suitable for large-scale production. The study highlights the synthesis of ZnO nanoparticles (ZnO NPs) using Laurus nobilis (L. nobilis) leaf extract and their characterization and biological activities for potential applications in the biomedical field. ZnO NPs were synthesized using Laurus nobilis leaf extract. The synthesized ZnO NPs were characterized by UV-Vis spectroscopy, TEM, XRD, and FT-IR. According to TEM and XRD diffraction analysis, with a mean particle size of 16 ± 5 nm, it was found that the synthesized ZnO NPs contain a hexagonal wurtzite structure. ZnO NPs have antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The antiproliferative activity of ZnO NPs was tested against the human colon cancer cell line and mouse normal fibroblast cell line using MTT assay in vitro. The results show that the prepared nanoparticles had antiproliferative in screened incubation time and concentrations.","PeriodicalId":14437,"journal":{"name":"International Journal of Secondary Metabolite","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of ZnO nanoparticles using Laurus nobilis leaf extract and investigation of antiproliferative and antibacterial activity potential\",\"authors\":\"E. Önem, Firdevs MERT SİVRİ, S. Akkoç, Cennet Çirrik, Aleyna Ezer\",\"doi\":\"10.21448/ijsm.1266244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology has recently emerged as an essential field of study in modern materials science. The green synthesis of nanoparticles using plant extracts is of great interest because it is cost-effective, eco-friendly, and suitable for large-scale production. The study highlights the synthesis of ZnO nanoparticles (ZnO NPs) using Laurus nobilis (L. nobilis) leaf extract and their characterization and biological activities for potential applications in the biomedical field. ZnO NPs were synthesized using Laurus nobilis leaf extract. The synthesized ZnO NPs were characterized by UV-Vis spectroscopy, TEM, XRD, and FT-IR. According to TEM and XRD diffraction analysis, with a mean particle size of 16 ± 5 nm, it was found that the synthesized ZnO NPs contain a hexagonal wurtzite structure. ZnO NPs have antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The antiproliferative activity of ZnO NPs was tested against the human colon cancer cell line and mouse normal fibroblast cell line using MTT assay in vitro. The results show that the prepared nanoparticles had antiproliferative in screened incubation time and concentrations.\",\"PeriodicalId\":14437,\"journal\":{\"name\":\"International Journal of Secondary Metabolite\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Secondary Metabolite\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21448/ijsm.1266244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Secondary Metabolite","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21448/ijsm.1266244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biosynthesis of ZnO nanoparticles using Laurus nobilis leaf extract and investigation of antiproliferative and antibacterial activity potential
Nanotechnology has recently emerged as an essential field of study in modern materials science. The green synthesis of nanoparticles using plant extracts is of great interest because it is cost-effective, eco-friendly, and suitable for large-scale production. The study highlights the synthesis of ZnO nanoparticles (ZnO NPs) using Laurus nobilis (L. nobilis) leaf extract and their characterization and biological activities for potential applications in the biomedical field. ZnO NPs were synthesized using Laurus nobilis leaf extract. The synthesized ZnO NPs were characterized by UV-Vis spectroscopy, TEM, XRD, and FT-IR. According to TEM and XRD diffraction analysis, with a mean particle size of 16 ± 5 nm, it was found that the synthesized ZnO NPs contain a hexagonal wurtzite structure. ZnO NPs have antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli). The antiproliferative activity of ZnO NPs was tested against the human colon cancer cell line and mouse normal fibroblast cell line using MTT assay in vitro. The results show that the prepared nanoparticles had antiproliferative in screened incubation time and concentrations.