考虑供电可靠性的Benders分解独立微电网多目标优化配置

IF 1.6 Q4 ENERGY & FUELS IET Energy Systems Integration Pub Date : 2022-01-29 DOI:10.1049/esi2.12060
Wei Wei, Herong Wang, Kai Hou, Ledong Ji
{"title":"考虑供电可靠性的Benders分解独立微电网多目标优化配置","authors":"Wei Wei,&nbsp;Herong Wang,&nbsp;Kai Hou,&nbsp;Ledong Ji","doi":"10.1049/esi2.12060","DOIUrl":null,"url":null,"abstract":"<p>Power supply reliability (PSR) is a critical factor in the optimal configuration of stand-alone microgrids. Considering the impact of the failure outage of power generation and energy storage equipment, as well as the uncertainty of renewable energy on PSR, a multi-objective bi-level mixed-integer optimisation model is proposed. Based on Benders decomposition, the model is decoupled into a master problem (MP) of the equipment optimal configuration considering economy and environmental conservation and a sub-problem (SP) of the PSR check. Considering the load importance hierarchy, two types of slack variables are introduced into the SP to ensure both the reliable power supply of important loads and the PSR of the system. Through interactive iteration of the MP and SP, the complexity of the optimisation model is considerably reduced, improving the solution efficiency while ensuring the rationality of the optimal configuration scheme. Finally, the effectiveness of the proposed model is verified by a typical stand-alone wind–photovoltaic–diesel–battery microgrid system and analysed in terms of the impact of reliability requirement and energy storage on the configuration scheme and algorithm convergence.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"4 2","pages":"281-295"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12060","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimal configuration of stand-alone microgrids based on Benders decomposition considering power supply reliability\",\"authors\":\"Wei Wei,&nbsp;Herong Wang,&nbsp;Kai Hou,&nbsp;Ledong Ji\",\"doi\":\"10.1049/esi2.12060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Power supply reliability (PSR) is a critical factor in the optimal configuration of stand-alone microgrids. Considering the impact of the failure outage of power generation and energy storage equipment, as well as the uncertainty of renewable energy on PSR, a multi-objective bi-level mixed-integer optimisation model is proposed. Based on Benders decomposition, the model is decoupled into a master problem (MP) of the equipment optimal configuration considering economy and environmental conservation and a sub-problem (SP) of the PSR check. Considering the load importance hierarchy, two types of slack variables are introduced into the SP to ensure both the reliable power supply of important loads and the PSR of the system. Through interactive iteration of the MP and SP, the complexity of the optimisation model is considerably reduced, improving the solution efficiency while ensuring the rationality of the optimal configuration scheme. Finally, the effectiveness of the proposed model is verified by a typical stand-alone wind–photovoltaic–diesel–battery microgrid system and analysed in terms of the impact of reliability requirement and energy storage on the configuration scheme and algorithm convergence.</p>\",\"PeriodicalId\":33288,\"journal\":{\"name\":\"IET Energy Systems Integration\",\"volume\":\"4 2\",\"pages\":\"281-295\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Energy Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

供电可靠性(PSR)是独立微电网优化配置的关键因素。考虑发电和储能设备故障停机的影响,以及可再生能源的不确定性对PSR的影响,提出了一种多目标双层次混合整数优化模型。基于弯管机分解,将模型解耦为考虑经济和环境的设备优化配置的主问题(MP)和PSR校验的子问题(SP)。考虑到负荷的重要性层次,在SP中引入两类松弛变量,以保证重要负荷的可靠供电和系统的PSR。通过MP和SP的交互迭代,大大降低了优化模型的复杂性,在保证最优配置方案合理性的同时提高了求解效率。最后,通过典型单机风-光电-柴电池微网系统验证了所提模型的有效性,并分析了可靠性需求和储能对配置方案和算法收敛性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-objective optimal configuration of stand-alone microgrids based on Benders decomposition considering power supply reliability

Power supply reliability (PSR) is a critical factor in the optimal configuration of stand-alone microgrids. Considering the impact of the failure outage of power generation and energy storage equipment, as well as the uncertainty of renewable energy on PSR, a multi-objective bi-level mixed-integer optimisation model is proposed. Based on Benders decomposition, the model is decoupled into a master problem (MP) of the equipment optimal configuration considering economy and environmental conservation and a sub-problem (SP) of the PSR check. Considering the load importance hierarchy, two types of slack variables are introduced into the SP to ensure both the reliable power supply of important loads and the PSR of the system. Through interactive iteration of the MP and SP, the complexity of the optimisation model is considerably reduced, improving the solution efficiency while ensuring the rationality of the optimal configuration scheme. Finally, the effectiveness of the proposed model is verified by a typical stand-alone wind–photovoltaic–diesel–battery microgrid system and analysed in terms of the impact of reliability requirement and energy storage on the configuration scheme and algorithm convergence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Energy Systems Integration
IET Energy Systems Integration Engineering-Engineering (miscellaneous)
CiteScore
5.90
自引率
8.30%
发文量
29
审稿时长
11 weeks
期刊最新文献
A reinforcement learning method for two-layer shipboard real-time energy management considering battery state estimation Cover Image Guest Editorial: Identification, stability analysis, control, and situation awareness of power systems with high penetrations of renewable energy resources Transient overvoltage suppression of LCC-HVDC sending-end system based on DC current control optimisation Theoretical study on Stark effect of Rydberg atom in super low frequency electric field measurement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1