{"title":"考虑供电可靠性的Benders分解独立微电网多目标优化配置","authors":"Wei Wei, Herong Wang, Kai Hou, Ledong Ji","doi":"10.1049/esi2.12060","DOIUrl":null,"url":null,"abstract":"<p>Power supply reliability (PSR) is a critical factor in the optimal configuration of stand-alone microgrids. Considering the impact of the failure outage of power generation and energy storage equipment, as well as the uncertainty of renewable energy on PSR, a multi-objective bi-level mixed-integer optimisation model is proposed. Based on Benders decomposition, the model is decoupled into a master problem (MP) of the equipment optimal configuration considering economy and environmental conservation and a sub-problem (SP) of the PSR check. Considering the load importance hierarchy, two types of slack variables are introduced into the SP to ensure both the reliable power supply of important loads and the PSR of the system. Through interactive iteration of the MP and SP, the complexity of the optimisation model is considerably reduced, improving the solution efficiency while ensuring the rationality of the optimal configuration scheme. Finally, the effectiveness of the proposed model is verified by a typical stand-alone wind–photovoltaic–diesel–battery microgrid system and analysed in terms of the impact of reliability requirement and energy storage on the configuration scheme and algorithm convergence.</p>","PeriodicalId":33288,"journal":{"name":"IET Energy Systems Integration","volume":"4 2","pages":"281-295"},"PeriodicalIF":1.6000,"publicationDate":"2022-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12060","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimal configuration of stand-alone microgrids based on Benders decomposition considering power supply reliability\",\"authors\":\"Wei Wei, Herong Wang, Kai Hou, Ledong Ji\",\"doi\":\"10.1049/esi2.12060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Power supply reliability (PSR) is a critical factor in the optimal configuration of stand-alone microgrids. Considering the impact of the failure outage of power generation and energy storage equipment, as well as the uncertainty of renewable energy on PSR, a multi-objective bi-level mixed-integer optimisation model is proposed. Based on Benders decomposition, the model is decoupled into a master problem (MP) of the equipment optimal configuration considering economy and environmental conservation and a sub-problem (SP) of the PSR check. Considering the load importance hierarchy, two types of slack variables are introduced into the SP to ensure both the reliable power supply of important loads and the PSR of the system. Through interactive iteration of the MP and SP, the complexity of the optimisation model is considerably reduced, improving the solution efficiency while ensuring the rationality of the optimal configuration scheme. Finally, the effectiveness of the proposed model is verified by a typical stand-alone wind–photovoltaic–diesel–battery microgrid system and analysed in terms of the impact of reliability requirement and energy storage on the configuration scheme and algorithm convergence.</p>\",\"PeriodicalId\":33288,\"journal\":{\"name\":\"IET Energy Systems Integration\",\"volume\":\"4 2\",\"pages\":\"281-295\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2022-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/esi2.12060\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Energy Systems Integration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Energy Systems Integration","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/esi2.12060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Multi-objective optimal configuration of stand-alone microgrids based on Benders decomposition considering power supply reliability
Power supply reliability (PSR) is a critical factor in the optimal configuration of stand-alone microgrids. Considering the impact of the failure outage of power generation and energy storage equipment, as well as the uncertainty of renewable energy on PSR, a multi-objective bi-level mixed-integer optimisation model is proposed. Based on Benders decomposition, the model is decoupled into a master problem (MP) of the equipment optimal configuration considering economy and environmental conservation and a sub-problem (SP) of the PSR check. Considering the load importance hierarchy, two types of slack variables are introduced into the SP to ensure both the reliable power supply of important loads and the PSR of the system. Through interactive iteration of the MP and SP, the complexity of the optimisation model is considerably reduced, improving the solution efficiency while ensuring the rationality of the optimal configuration scheme. Finally, the effectiveness of the proposed model is verified by a typical stand-alone wind–photovoltaic–diesel–battery microgrid system and analysed in terms of the impact of reliability requirement and energy storage on the configuration scheme and algorithm convergence.