石油化工装置石脑油加氢装置汽提塔模拟及技术经济分析

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2023-07-24 DOI:10.1515/cppm-2023-0029
Xiaoyue Lyu, Jinyue Wang
{"title":"石油化工装置石脑油加氢装置汽提塔模拟及技术经济分析","authors":"Xiaoyue Lyu, Jinyue Wang","doi":"10.1515/cppm-2023-0029","DOIUrl":null,"url":null,"abstract":"Abstract This paper suggests a novel framework to retrieve the squandered heat of the Naphtha Hydrotreating Unit of the petrochemical plants. In this idea, the distillation tower’s output of the hydrotreating naphtha unit of the plant is employed as the working fluid to run an organic Rankine cycle with benzene. The procedure is evaluated comprehensively from energy, economic and exergetic point of view using Aspen Haysys software. An advanced case study, including sensitivity analysis, is provided for the Bouali petrochemical plant in Iran to realistically indicate the performance of the suggested configuration. The air cooler in the distillation unit of the aforementioned plant removes (squanders) about 3418 kW of energy, which an organic Rankine cycle can recover. Based on the findings, the exergetic and thermal efficiency of the suggested cycle is 82.53 % and 13.28 %, respectively, with a 1,3620kWh/day rate of energy production. According to the exergetic analysis, the ORC turbine has the highest exergy destruction rate of about 178.76 kW. Also, using the distillation tower squander heat as the heat source to the organic Rankine cycle leads to the least exergy destruction rate. Besides, the output exergy ratio of the whole integrated system to its input is 0.907. The suggested integrated system reduces the total energy consumption from 0.4 to 0.29 GJE/tonFeed with a total investment cost of 11.97 M$, in which the turbines have the highest portion of about 11.2 M$. Hence, the suggested plan’s total income is around 31.94 M$/year.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and technoeconomic analyses of a stripper column of the naphtha hydrotreating unit of the petrochemical plant\",\"authors\":\"Xiaoyue Lyu, Jinyue Wang\",\"doi\":\"10.1515/cppm-2023-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper suggests a novel framework to retrieve the squandered heat of the Naphtha Hydrotreating Unit of the petrochemical plants. In this idea, the distillation tower’s output of the hydrotreating naphtha unit of the plant is employed as the working fluid to run an organic Rankine cycle with benzene. The procedure is evaluated comprehensively from energy, economic and exergetic point of view using Aspen Haysys software. An advanced case study, including sensitivity analysis, is provided for the Bouali petrochemical plant in Iran to realistically indicate the performance of the suggested configuration. The air cooler in the distillation unit of the aforementioned plant removes (squanders) about 3418 kW of energy, which an organic Rankine cycle can recover. Based on the findings, the exergetic and thermal efficiency of the suggested cycle is 82.53 % and 13.28 %, respectively, with a 1,3620kWh/day rate of energy production. According to the exergetic analysis, the ORC turbine has the highest exergy destruction rate of about 178.76 kW. Also, using the distillation tower squander heat as the heat source to the organic Rankine cycle leads to the least exergy destruction rate. Besides, the output exergy ratio of the whole integrated system to its input is 0.907. The suggested integrated system reduces the total energy consumption from 0.4 to 0.29 GJE/tonFeed with a total investment cost of 11.97 M$, in which the turbines have the highest portion of about 11.2 M$. Hence, the suggested plan’s total income is around 31.94 M$/year.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2023-0029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了一种新的石脑油加氢处理装置废热回收框架。在这个想法中,精馏塔的输出加氢处理石脑油装置作为工作流体运行一个有机朗肯循环与苯。使用Aspen Haysys软件从能源、经济和能源的角度对该过程进行综合评估。为伊朗的Bouali石化厂提供了一个高级案例研究,包括敏感性分析,以实际地表明建议配置的性能。上述装置蒸馏装置中的空气冷却器去除(浪费)约3418千瓦的能量,有机朗肯循环可以回收这些能量。根据研究结果,建议循环的火用效率和热效率分别为82.53%和13.28%,发电量为1,3620千瓦时/天。根据火用分析,ORC水轮机的火用破坏率最高,约为178.76 kW。此外,利用精馏塔废热作为有机朗肯循环的热源,其火用破坏率最小。整个集成系统输出与输入的火用比为0.907。建议的集成系统将总能耗从0.4 GJE/tonFeed降低到0.29 GJE/tonFeed,总投资成本为1197万美元,其中涡轮机的投资比例最高,约为1120万美元。因此,建议计划的总收入约为3194万美元/年。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation and technoeconomic analyses of a stripper column of the naphtha hydrotreating unit of the petrochemical plant
Abstract This paper suggests a novel framework to retrieve the squandered heat of the Naphtha Hydrotreating Unit of the petrochemical plants. In this idea, the distillation tower’s output of the hydrotreating naphtha unit of the plant is employed as the working fluid to run an organic Rankine cycle with benzene. The procedure is evaluated comprehensively from energy, economic and exergetic point of view using Aspen Haysys software. An advanced case study, including sensitivity analysis, is provided for the Bouali petrochemical plant in Iran to realistically indicate the performance of the suggested configuration. The air cooler in the distillation unit of the aforementioned plant removes (squanders) about 3418 kW of energy, which an organic Rankine cycle can recover. Based on the findings, the exergetic and thermal efficiency of the suggested cycle is 82.53 % and 13.28 %, respectively, with a 1,3620kWh/day rate of energy production. According to the exergetic analysis, the ORC turbine has the highest exergy destruction rate of about 178.76 kW. Also, using the distillation tower squander heat as the heat source to the organic Rankine cycle leads to the least exergy destruction rate. Besides, the output exergy ratio of the whole integrated system to its input is 0.907. The suggested integrated system reduces the total energy consumption from 0.4 to 0.29 GJE/tonFeed with a total investment cost of 11.97 M$, in which the turbines have the highest portion of about 11.2 M$. Hence, the suggested plan’s total income is around 31.94 M$/year.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Heat transfer efficiency in gas-solid fluidized beds with flat and corrugated walls. Enhancing heat transfer in tube heat exchanger containing water/Cu nanofluid by using turbulator Enhancing heat exchanger efficiency with novel perforated cone-shaped turbulators and nanofluids: a computational study Mathematical modeling and evaluation of permeation and membrane separation performance for Fischer–Tropsch products in a hydrophilic membrane reactor Energy, exergy, economic, and environmental analysis of natural gas sweetening process using lean vapor compression: a comparison study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1