与三种护港结构集成的振荡水柱波能转换器的性能研究

Q4 Physics and Astronomy Defect and Diffusion Forum Pub Date : 2023-07-14 DOI:10.4028/p-BL5v8v
E. Didier, P. Teixeira
{"title":"与三种护港结构集成的振荡水柱波能转换器的性能研究","authors":"E. Didier, P. Teixeira","doi":"10.4028/p-BL5v8v","DOIUrl":null,"url":null,"abstract":"Oscillating water column (OWC) wave energy converters can be integrated in harbor protection structures, such as vertical, rubble mound and piled breakwaters. The interaction between the incident wave and the structure, in which the OWC device is integrated, is significantly different, since the structure of the vertical breakwater is impermeable, while that of the rubble mound breakwater is porous. The performance of the OWC device for the three configurations is analyzed for a range of wave periods from 6 to 12 s and a wave height of 1 m. The OWC device integrated into the vertical breakwater shows the best performance (maximum mean pneumatic power of 70 kW), and the mean pneumatic power is globally 3 % higher than that of the OWC device integrated into the rubble mound breakwater (maximum mean pneumatic power of 67.4 kW). The performance of the OWC device integrated into the piled breakwater shows a similar trend to the OWC device integrated into the vertical breakwater for wave periods lower than 9 s, but it has a significant loss of performance for higher wave periods.","PeriodicalId":11306,"journal":{"name":"Defect and Diffusion Forum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of an Oscillating Water Column Wave Energy Converter Integrated with Three Types of Harbor Protection Structures\",\"authors\":\"E. Didier, P. Teixeira\",\"doi\":\"10.4028/p-BL5v8v\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oscillating water column (OWC) wave energy converters can be integrated in harbor protection structures, such as vertical, rubble mound and piled breakwaters. The interaction between the incident wave and the structure, in which the OWC device is integrated, is significantly different, since the structure of the vertical breakwater is impermeable, while that of the rubble mound breakwater is porous. The performance of the OWC device for the three configurations is analyzed for a range of wave periods from 6 to 12 s and a wave height of 1 m. The OWC device integrated into the vertical breakwater shows the best performance (maximum mean pneumatic power of 70 kW), and the mean pneumatic power is globally 3 % higher than that of the OWC device integrated into the rubble mound breakwater (maximum mean pneumatic power of 67.4 kW). The performance of the OWC device integrated into the piled breakwater shows a similar trend to the OWC device integrated into the vertical breakwater for wave periods lower than 9 s, but it has a significant loss of performance for higher wave periods.\",\"PeriodicalId\":11306,\"journal\":{\"name\":\"Defect and Diffusion Forum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defect and Diffusion Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-BL5v8v\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defect and Diffusion Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-BL5v8v","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

振荡水柱波能转换器可集成于垂直、碎石丘、堆垛式防波堤等港口防护结构中。竖向防波堤的结构是不透水的,而碎石丘式防波堤的结构是多孔的,因此在集成了OWC装置的情况下,入射波与结构之间的相互作用有很大的不同。在波浪周期为6 ~ 12 s、波高为1 m的条件下,分析了三种结构下OWC装置的性能。垂直防波堤集成的OWC装置性能最佳(最大平均气动功率为70 kW),全球平均气动功率比碎石丘防波堤集成的OWC装置(最大平均气动功率为67.4 kW)高3%。在波浪周期小于9 s的情况下,堆式防波堤集成的OWC装置的性能与垂直防波堤集成的OWC装置的性能表现出相似的趋势,但在较高的波浪周期下,OWC装置的性能损失明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Performance of an Oscillating Water Column Wave Energy Converter Integrated with Three Types of Harbor Protection Structures
Oscillating water column (OWC) wave energy converters can be integrated in harbor protection structures, such as vertical, rubble mound and piled breakwaters. The interaction between the incident wave and the structure, in which the OWC device is integrated, is significantly different, since the structure of the vertical breakwater is impermeable, while that of the rubble mound breakwater is porous. The performance of the OWC device for the three configurations is analyzed for a range of wave periods from 6 to 12 s and a wave height of 1 m. The OWC device integrated into the vertical breakwater shows the best performance (maximum mean pneumatic power of 70 kW), and the mean pneumatic power is globally 3 % higher than that of the OWC device integrated into the rubble mound breakwater (maximum mean pneumatic power of 67.4 kW). The performance of the OWC device integrated into the piled breakwater shows a similar trend to the OWC device integrated into the vertical breakwater for wave periods lower than 9 s, but it has a significant loss of performance for higher wave periods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Defect and Diffusion Forum
Defect and Diffusion Forum Physics and Astronomy-Radiation
CiteScore
1.20
自引率
0.00%
发文量
127
期刊介绍: Defect and Diffusion Forum (formerly Part A of ''''Diffusion and Defect Data'''') is designed for publication of up-to-date scientific research and applied aspects in the area of formation and dissemination of defects in solid materials, including the phenomena of diffusion. In addition to the traditional topic of mass diffusion, the journal is open to papers from the area of heat transfer in solids, liquids and gases, materials and substances. All papers are peer-reviewed and edited. Members of Editorial Boards and Associate Editors are invited to submit papers for publication in “Defect and Diffusion Forum” . Authors retain the right to publish an extended and significantly updated version in another periodical.
期刊最新文献
Selected Mechanical Properties of Concrete with Regard to the Type of Steel Fibers Research on the Influence of Humidity on the Manufacture of GFRP Vessels in the Equatorial Rheological Properties and Segregation of Fresh UHPC with Fibers Affected by Initial Temperature of Concrete Mix Mechanical Properties of Luffa Fiber Reinforced Recycled Polymer Composite Advanced Materials and Technologies in Engineering Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1