S. Martinez, Ivan Šoić, Valentino Golub, Bojan Hudec
{"title":"涂层风化、长期浸泡和盐雾试验结果的比较EIS量化","authors":"S. Martinez, Ivan Šoić, Valentino Golub, Bojan Hudec","doi":"10.5006/4267","DOIUrl":null,"url":null,"abstract":"In the present study, we repeatedly used the surface-applied paste electrolyte cell to record the EIS spectra of four coating systems with different barrier properties exposed to different environments. The absence of a liquid electrolyte allows direct recording of the electrolyte-unaltered coating response to environmental stressors. Exposures included humidity between 23 and 95%, temperatures between 10 and 50°C, 720 hours of ISO 9227 neutral salt spray, 1 year in mild continental urban climate, and for comparison, 3 years of ISO 16773 3.5% NaCl immersion. The coatings showed significantly different temperature susceptibility of impedance revealing two temperature ranges with activation energies corresponding to ionic conductivity below 20°C and conductivity influenced by polymer chain movements above 30°C. Impedances measured for intact coatings or impedances calculated from the assumed range of dielectric constant and coating thicknesses can be used as references. The EIS outcome of the laboratory tests and the time- and temperature-resolved EIS responses under atmospheric exposure were compared with the reference impedances of the coatings. Mild continental climate exposure at temperatures < 35°C and immersion at 23±2°C yielded better barrier performance for the two solvent based coating systems compared to the two waterborne systems of comparable thickness and number of layers. The NSS test that proceeds at 35°C yielded better performance of the both solvent based coatings over the waterborne coatings, regardless of the thickness. EIS quantification of barrier performance, which excludes the influence of the liquid electrolyte, has provided insight into the temperature effect on barrier behavior of the coatings under non-accelerated and accelerated exposures and the final coating rating.","PeriodicalId":10717,"journal":{"name":"Corrosion","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative EIS Quantification of Coating Weathering, Long-Term Immersion and Salt Spray Test Outcomes\",\"authors\":\"S. Martinez, Ivan Šoić, Valentino Golub, Bojan Hudec\",\"doi\":\"10.5006/4267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, we repeatedly used the surface-applied paste electrolyte cell to record the EIS spectra of four coating systems with different barrier properties exposed to different environments. The absence of a liquid electrolyte allows direct recording of the electrolyte-unaltered coating response to environmental stressors. Exposures included humidity between 23 and 95%, temperatures between 10 and 50°C, 720 hours of ISO 9227 neutral salt spray, 1 year in mild continental urban climate, and for comparison, 3 years of ISO 16773 3.5% NaCl immersion. The coatings showed significantly different temperature susceptibility of impedance revealing two temperature ranges with activation energies corresponding to ionic conductivity below 20°C and conductivity influenced by polymer chain movements above 30°C. Impedances measured for intact coatings or impedances calculated from the assumed range of dielectric constant and coating thicknesses can be used as references. The EIS outcome of the laboratory tests and the time- and temperature-resolved EIS responses under atmospheric exposure were compared with the reference impedances of the coatings. Mild continental climate exposure at temperatures < 35°C and immersion at 23±2°C yielded better barrier performance for the two solvent based coating systems compared to the two waterborne systems of comparable thickness and number of layers. The NSS test that proceeds at 35°C yielded better performance of the both solvent based coatings over the waterborne coatings, regardless of the thickness. EIS quantification of barrier performance, which excludes the influence of the liquid electrolyte, has provided insight into the temperature effect on barrier behavior of the coatings under non-accelerated and accelerated exposures and the final coating rating.\",\"PeriodicalId\":10717,\"journal\":{\"name\":\"Corrosion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5006/4267\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5006/4267","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparative EIS Quantification of Coating Weathering, Long-Term Immersion and Salt Spray Test Outcomes
In the present study, we repeatedly used the surface-applied paste electrolyte cell to record the EIS spectra of four coating systems with different barrier properties exposed to different environments. The absence of a liquid electrolyte allows direct recording of the electrolyte-unaltered coating response to environmental stressors. Exposures included humidity between 23 and 95%, temperatures between 10 and 50°C, 720 hours of ISO 9227 neutral salt spray, 1 year in mild continental urban climate, and for comparison, 3 years of ISO 16773 3.5% NaCl immersion. The coatings showed significantly different temperature susceptibility of impedance revealing two temperature ranges with activation energies corresponding to ionic conductivity below 20°C and conductivity influenced by polymer chain movements above 30°C. Impedances measured for intact coatings or impedances calculated from the assumed range of dielectric constant and coating thicknesses can be used as references. The EIS outcome of the laboratory tests and the time- and temperature-resolved EIS responses under atmospheric exposure were compared with the reference impedances of the coatings. Mild continental climate exposure at temperatures < 35°C and immersion at 23±2°C yielded better barrier performance for the two solvent based coating systems compared to the two waterborne systems of comparable thickness and number of layers. The NSS test that proceeds at 35°C yielded better performance of the both solvent based coatings over the waterborne coatings, regardless of the thickness. EIS quantification of barrier performance, which excludes the influence of the liquid electrolyte, has provided insight into the temperature effect on barrier behavior of the coatings under non-accelerated and accelerated exposures and the final coating rating.
期刊介绍:
CORROSION is the premier research journal featuring peer-reviewed technical articles from the world’s top researchers and provides a permanent record of progress in the science and technology of corrosion prevention and control. The scope of the journal includes the latest developments in areas of corrosion metallurgy, mechanisms, predictors, cracking (sulfide stress, stress corrosion, hydrogen-induced), passivation, and CO2 corrosion.
70+ years and over 7,100 peer-reviewed articles with advances in corrosion science and engineering have been published in CORROSION. The journal publishes seven article types – original articles, invited critical reviews, technical notes, corrosion communications fast-tracked for rapid publication, special research topic issues, research letters of yearly annual conference student poster sessions, and scientific investigations of field corrosion processes. CORROSION, the Journal of Science and Engineering, serves as an important communication platform for academics, researchers, technical libraries, and universities.
Articles considered for CORROSION should have significant permanent value and should accomplish at least one of the following objectives:
• Contribute awareness of corrosion phenomena,
• Advance understanding of fundamental process, and/or
• Further the knowledge of techniques and practices used to reduce corrosion.