策略选择模型中分离的检测与校正

IF 4.7 2区 社会学 Q1 POLITICAL SCIENCE Political Analysis Pub Date : 2023-01-26 DOI:10.1017/pan.2022.36
Casey Crisman-Cox, O. Gasparyan, Curtis S. Signorino
{"title":"策略选择模型中分离的检测与校正","authors":"Casey Crisman-Cox, O. Gasparyan, Curtis S. Signorino","doi":"10.1017/pan.2022.36","DOIUrl":null,"url":null,"abstract":"Abstract Separation or “perfect prediction” is a common problem in discrete choice models that, in practice, leads to inflated point estimates and standard errors. Standard statistical packages do not provide clear advice on how to correct these problems. Furthermore, separation can go completely undiagnosed in fitting advanced models that optimize a user-supplied log-likelihood rather than relying on pre-programmed estimation procedures. In this paper, we both describe the problems that separation can cause and address the issue of detecting it in empirical models of strategic interaction. We then consider several solutions based on penalized maximum likelihood estimation. Using Monte Carlo experiments and a replication study, we demonstrate that when separation is detected in the data, the penalized methods we consider are superior to ordinary maximum likelihood estimators.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"31 1","pages":"414 - 429"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting and Correcting for Separation in Strategic Choice Models\",\"authors\":\"Casey Crisman-Cox, O. Gasparyan, Curtis S. Signorino\",\"doi\":\"10.1017/pan.2022.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Separation or “perfect prediction” is a common problem in discrete choice models that, in practice, leads to inflated point estimates and standard errors. Standard statistical packages do not provide clear advice on how to correct these problems. Furthermore, separation can go completely undiagnosed in fitting advanced models that optimize a user-supplied log-likelihood rather than relying on pre-programmed estimation procedures. In this paper, we both describe the problems that separation can cause and address the issue of detecting it in empirical models of strategic interaction. We then consider several solutions based on penalized maximum likelihood estimation. Using Monte Carlo experiments and a replication study, we demonstrate that when separation is detected in the data, the penalized methods we consider are superior to ordinary maximum likelihood estimators.\",\"PeriodicalId\":48270,\"journal\":{\"name\":\"Political Analysis\",\"volume\":\"31 1\",\"pages\":\"414 - 429\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Analysis\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1017/pan.2022.36\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2022.36","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
引用次数: 1

摘要

分离或“完美预测”是离散选择模型中的一个常见问题,在实践中,它会导致过高的点估计和标准误差。标准的统计软件包没有提供关于如何纠正这些问题的明确建议。此外,在拟合优化用户提供的对数似然的高级模型时,分离可能完全无法诊断,而不是依赖于预编程的估计程序。在本文中,我们都描述了分离可能导致的问题,并解决了在战略互动的经验模型中检测分离的问题。然后,我们考虑了几种基于惩罚极大似然估计的解决方案。通过蒙特卡罗实验和复制研究,我们证明了当在数据中检测到分离时,我们考虑的惩罚方法优于普通的最大似然估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting and Correcting for Separation in Strategic Choice Models
Abstract Separation or “perfect prediction” is a common problem in discrete choice models that, in practice, leads to inflated point estimates and standard errors. Standard statistical packages do not provide clear advice on how to correct these problems. Furthermore, separation can go completely undiagnosed in fitting advanced models that optimize a user-supplied log-likelihood rather than relying on pre-programmed estimation procedures. In this paper, we both describe the problems that separation can cause and address the issue of detecting it in empirical models of strategic interaction. We then consider several solutions based on penalized maximum likelihood estimation. Using Monte Carlo experiments and a replication study, we demonstrate that when separation is detected in the data, the penalized methods we consider are superior to ordinary maximum likelihood estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Political Analysis
Political Analysis POLITICAL SCIENCE-
CiteScore
8.80
自引率
3.70%
发文量
30
期刊介绍: Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.
期刊最新文献
Assessing Performance of Martins's and Sampson's Formulae for Calculation of LDL-C in Indian Population: A Single Center Retrospective Study. On Finetuning Large Language Models Explaining Recruitment to Extremism: A Bayesian Hierarchical Case–Control Approach Implementation Matters: Evaluating the Proportional Hazard Test’s Performance Face Detection, Tracking, and Classification from Large-Scale News Archives for Analysis of Key Political Figures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1