Casey Crisman-Cox, O. Gasparyan, Curtis S. Signorino
{"title":"策略选择模型中分离的检测与校正","authors":"Casey Crisman-Cox, O. Gasparyan, Curtis S. Signorino","doi":"10.1017/pan.2022.36","DOIUrl":null,"url":null,"abstract":"Abstract Separation or “perfect prediction” is a common problem in discrete choice models that, in practice, leads to inflated point estimates and standard errors. Standard statistical packages do not provide clear advice on how to correct these problems. Furthermore, separation can go completely undiagnosed in fitting advanced models that optimize a user-supplied log-likelihood rather than relying on pre-programmed estimation procedures. In this paper, we both describe the problems that separation can cause and address the issue of detecting it in empirical models of strategic interaction. We then consider several solutions based on penalized maximum likelihood estimation. Using Monte Carlo experiments and a replication study, we demonstrate that when separation is detected in the data, the penalized methods we consider are superior to ordinary maximum likelihood estimators.","PeriodicalId":48270,"journal":{"name":"Political Analysis","volume":"31 1","pages":"414 - 429"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Detecting and Correcting for Separation in Strategic Choice Models\",\"authors\":\"Casey Crisman-Cox, O. Gasparyan, Curtis S. Signorino\",\"doi\":\"10.1017/pan.2022.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Separation or “perfect prediction” is a common problem in discrete choice models that, in practice, leads to inflated point estimates and standard errors. Standard statistical packages do not provide clear advice on how to correct these problems. Furthermore, separation can go completely undiagnosed in fitting advanced models that optimize a user-supplied log-likelihood rather than relying on pre-programmed estimation procedures. In this paper, we both describe the problems that separation can cause and address the issue of detecting it in empirical models of strategic interaction. We then consider several solutions based on penalized maximum likelihood estimation. Using Monte Carlo experiments and a replication study, we demonstrate that when separation is detected in the data, the penalized methods we consider are superior to ordinary maximum likelihood estimators.\",\"PeriodicalId\":48270,\"journal\":{\"name\":\"Political Analysis\",\"volume\":\"31 1\",\"pages\":\"414 - 429\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Political Analysis\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.1017/pan.2022.36\",\"RegionNum\":2,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLITICAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Political Analysis","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.1017/pan.2022.36","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLITICAL SCIENCE","Score":null,"Total":0}
Detecting and Correcting for Separation in Strategic Choice Models
Abstract Separation or “perfect prediction” is a common problem in discrete choice models that, in practice, leads to inflated point estimates and standard errors. Standard statistical packages do not provide clear advice on how to correct these problems. Furthermore, separation can go completely undiagnosed in fitting advanced models that optimize a user-supplied log-likelihood rather than relying on pre-programmed estimation procedures. In this paper, we both describe the problems that separation can cause and address the issue of detecting it in empirical models of strategic interaction. We then consider several solutions based on penalized maximum likelihood estimation. Using Monte Carlo experiments and a replication study, we demonstrate that when separation is detected in the data, the penalized methods we consider are superior to ordinary maximum likelihood estimators.
期刊介绍:
Political Analysis chronicles these exciting developments by publishing the most sophisticated scholarship in the field. It is the place to learn new methods, to find some of the best empirical scholarship, and to publish your best research.