A. Razeghi-Harikandeei, B. Ganji, R. Jafari-Talookolaei, A. Abdipour
{"title":"静电作用下分层微束MEMS的静态、自由和强制振动分析","authors":"A. Razeghi-Harikandeei, B. Ganji, R. Jafari-Talookolaei, A. Abdipour","doi":"10.24423/AOM.3529","DOIUrl":null,"url":null,"abstract":"In this paper, the delamination effect on the static and natural frequency response of a microbeam subjected to the nonlinear electrostatic force is studied using a semi-analytical approach for the first time. The Euler–Bernoulli beam assumption along with the non-classical modified couple stress theory is used to obtain the governing differential equation of motion and then a reduced-order model based on Galerkin’s decomposition method is obtained. At first the microbeam with very small delamination like an intact microbeam is solved and then the solution is compared with those reported in the literature and the solution obtained using 3D-coupled electromechanical software. After validation, the effects of delamination length and its locations in thickness and length directions on the microbeam behavior are investigated in details. It is shown that the delamination has remarkable effects on the characteristics of the microbeam, especially near the pull-in voltage. Also, the delaminated microbeam with various thicknesses is studied using both the classical and the non-classical theories. It is found that the difference between the two models is significant for the thin microbeam with a thickness near of below than its material length scale parameter. This investigation is helpful for the nondestructive detection of the delamination in the beams.","PeriodicalId":8280,"journal":{"name":"Archives of Mechanics","volume":"72 1","pages":"169-188"},"PeriodicalIF":1.1000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Static, free and forced vibration analysis of a delaminated microbeam-based MEMS subjected to the electrostatic force\",\"authors\":\"A. Razeghi-Harikandeei, B. Ganji, R. Jafari-Talookolaei, A. Abdipour\",\"doi\":\"10.24423/AOM.3529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the delamination effect on the static and natural frequency response of a microbeam subjected to the nonlinear electrostatic force is studied using a semi-analytical approach for the first time. The Euler–Bernoulli beam assumption along with the non-classical modified couple stress theory is used to obtain the governing differential equation of motion and then a reduced-order model based on Galerkin’s decomposition method is obtained. At first the microbeam with very small delamination like an intact microbeam is solved and then the solution is compared with those reported in the literature and the solution obtained using 3D-coupled electromechanical software. After validation, the effects of delamination length and its locations in thickness and length directions on the microbeam behavior are investigated in details. It is shown that the delamination has remarkable effects on the characteristics of the microbeam, especially near the pull-in voltage. Also, the delaminated microbeam with various thicknesses is studied using both the classical and the non-classical theories. It is found that the difference between the two models is significant for the thin microbeam with a thickness near of below than its material length scale parameter. This investigation is helpful for the nondestructive detection of the delamination in the beams.\",\"PeriodicalId\":8280,\"journal\":{\"name\":\"Archives of Mechanics\",\"volume\":\"72 1\",\"pages\":\"169-188\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24423/AOM.3529\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24423/AOM.3529","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Static, free and forced vibration analysis of a delaminated microbeam-based MEMS subjected to the electrostatic force
In this paper, the delamination effect on the static and natural frequency response of a microbeam subjected to the nonlinear electrostatic force is studied using a semi-analytical approach for the first time. The Euler–Bernoulli beam assumption along with the non-classical modified couple stress theory is used to obtain the governing differential equation of motion and then a reduced-order model based on Galerkin’s decomposition method is obtained. At first the microbeam with very small delamination like an intact microbeam is solved and then the solution is compared with those reported in the literature and the solution obtained using 3D-coupled electromechanical software. After validation, the effects of delamination length and its locations in thickness and length directions on the microbeam behavior are investigated in details. It is shown that the delamination has remarkable effects on the characteristics of the microbeam, especially near the pull-in voltage. Also, the delaminated microbeam with various thicknesses is studied using both the classical and the non-classical theories. It is found that the difference between the two models is significant for the thin microbeam with a thickness near of below than its material length scale parameter. This investigation is helpful for the nondestructive detection of the delamination in the beams.
期刊介绍:
Archives of Mechanics provides a forum for original research on mechanics of solids, fluids and discrete systems, including the development of mathematical methods for solving mechanical problems. The journal encompasses all aspects of the field, with the emphasis placed on:
-mechanics of materials: elasticity, plasticity, time-dependent phenomena, phase transformation, damage, fracture; physical and experimental foundations, micromechanics, thermodynamics, instabilities;
-methods and problems in continuum mechanics: general theory and novel applications, thermomechanics, structural analysis, porous media, contact problems;
-dynamics of material systems;
-fluid flows and interactions with solids.
Papers published in the Archives should contain original contributions dealing with theoretical, experimental, or numerical aspects of mechanical problems listed above.
The journal publishes also current announcements and information about important scientific events of possible interest to its readers, like conferences, congresses, symposia, work-shops, courses, etc.
Occasionally, special issues of the journal may be devoted to publication of all or selected papers presented at international conferences or other scientific meetings. However, all papers intended for such an issue are subjected to the usual reviewing and acceptance procedure.