采用先进能效等级感应电动机的现代化泵机组投资回收期分析

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Electrical Engineering & Electromechanics Pub Date : 2021-02-23 DOI:10.20998/2074-272X.2021.1.03
V. Goman, V. Prakht, V. Kazakbaev, V. Dmitrievskii, E. Valeev, A. Paramonov
{"title":"采用先进能效等级感应电动机的现代化泵机组投资回收期分析","authors":"V. Goman, V. Prakht, V. Kazakbaev, V. Dmitrievskii, E. Valeev, A. Paramonov","doi":"10.20998/2074-272X.2021.1.03","DOIUrl":null,"url":null,"abstract":"Aim. The comparative analysis of energy consumption, electricity costs during lifetime cycle and payback period of a pump unit with 90 kW 2-pole induction motors, belonging to various energy efficiency classes, feeding directly from power grid. Methods. The examined operating modes aligned with a typical operating cycle of a pump unit with approximately constant flow rate of 75-110 % of the rated flow. The calculations were based on the pump and induction motors nameplate data, which, in their turn, were based on the manufacturers’ experimental data. Results. The calculations of energy consumption, electricity costs and payback periods of a pump unit with 90 kW 2-pole induction motors, feeding directly from power grid have been performed in the article. The application of induction motors belonging to IE2, IE3 and IE4 energy efficiency classes has been discussed. Practical value. It has been demonstrated, than in case of replacement of an induction motor of energy efficiency class IE2 due to planned retrofit, payback period for an IE4 induction motor is 2.18 years, energy savings within a calculated 20-year operating period are 268MW·h, which makes €41110 in money terms. Under the same conditions, the replacement of an induction motor of energy efficiency class IE2 with an induction motor of energy efficiency class IE3 will allow to save 88 MW·h within a calculated operating period, which, expressed in monetary terms, is €13500 and the payback period is 5.11 years. Thus, the article proves that despite a higher initial price, the choice of an induction motor of energy efficiency class IE4 tends to be more economically advantageous.","PeriodicalId":44198,"journal":{"name":"Electrical Engineering & Electromechanics","volume":"1 1","pages":"15-19"},"PeriodicalIF":1.6000,"publicationDate":"2021-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the payback period of a modernized pump unit with induction electric motors of advanced energy efficiency classes\",\"authors\":\"V. Goman, V. Prakht, V. Kazakbaev, V. Dmitrievskii, E. Valeev, A. Paramonov\",\"doi\":\"10.20998/2074-272X.2021.1.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim. The comparative analysis of energy consumption, electricity costs during lifetime cycle and payback period of a pump unit with 90 kW 2-pole induction motors, belonging to various energy efficiency classes, feeding directly from power grid. Methods. The examined operating modes aligned with a typical operating cycle of a pump unit with approximately constant flow rate of 75-110 % of the rated flow. The calculations were based on the pump and induction motors nameplate data, which, in their turn, were based on the manufacturers’ experimental data. Results. The calculations of energy consumption, electricity costs and payback periods of a pump unit with 90 kW 2-pole induction motors, feeding directly from power grid have been performed in the article. The application of induction motors belonging to IE2, IE3 and IE4 energy efficiency classes has been discussed. Practical value. It has been demonstrated, than in case of replacement of an induction motor of energy efficiency class IE2 due to planned retrofit, payback period for an IE4 induction motor is 2.18 years, energy savings within a calculated 20-year operating period are 268MW·h, which makes €41110 in money terms. Under the same conditions, the replacement of an induction motor of energy efficiency class IE2 with an induction motor of energy efficiency class IE3 will allow to save 88 MW·h within a calculated operating period, which, expressed in monetary terms, is €13500 and the payback period is 5.11 years. Thus, the article proves that despite a higher initial price, the choice of an induction motor of energy efficiency class IE4 tends to be more economically advantageous.\",\"PeriodicalId\":44198,\"journal\":{\"name\":\"Electrical Engineering & Electromechanics\",\"volume\":\"1 1\",\"pages\":\"15-19\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering & Electromechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20998/2074-272X.2021.1.03\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering & Electromechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20998/2074-272X.2021.1.03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

的目标。采用不同能效等级的90 kW 2极感应电动机,对直接从电网供电的泵机组进行了能耗、全寿命周期和投资回收期的电费对比分析。方法。所检查的运行模式与泵单元的典型运行周期一致,流量约为额定流量的75- 110%。这些计算是基于泵和感应电动机铭牌上的数据,而铭牌上的数据又是基于制造商的实验数据。结果。本文对采用90kw双极感应电动机直接从电网馈电的泵机组进行了能耗、电费和投资回收期的计算。讨论了IE2、IE3和IE4能效等级感应电动机的应用。实用价值。有研究表明,在计划改造的情况下更换能效等级为IE2的感应电机,IE4感应电机的投资回收期为2.18年,在计算的20年运行期内节省的能源为268MW·h,以货币形式计算为41110欧元。在相同条件下,将能效等级为IE2的感应电机更换为能效等级为IE3的感应电机,在计算的运行周期内可节省88 MW·h,以货币形式表示为13500欧元,投资回收期为5.11年。因此,本文证明,尽管初始价格较高,但选择能效等级为IE4的感应电机往往更具经济优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of the payback period of a modernized pump unit with induction electric motors of advanced energy efficiency classes
Aim. The comparative analysis of energy consumption, electricity costs during lifetime cycle and payback period of a pump unit with 90 kW 2-pole induction motors, belonging to various energy efficiency classes, feeding directly from power grid. Methods. The examined operating modes aligned with a typical operating cycle of a pump unit with approximately constant flow rate of 75-110 % of the rated flow. The calculations were based on the pump and induction motors nameplate data, which, in their turn, were based on the manufacturers’ experimental data. Results. The calculations of energy consumption, electricity costs and payback periods of a pump unit with 90 kW 2-pole induction motors, feeding directly from power grid have been performed in the article. The application of induction motors belonging to IE2, IE3 and IE4 energy efficiency classes has been discussed. Practical value. It has been demonstrated, than in case of replacement of an induction motor of energy efficiency class IE2 due to planned retrofit, payback period for an IE4 induction motor is 2.18 years, energy savings within a calculated 20-year operating period are 268MW·h, which makes €41110 in money terms. Under the same conditions, the replacement of an induction motor of energy efficiency class IE2 with an induction motor of energy efficiency class IE3 will allow to save 88 MW·h within a calculated operating period, which, expressed in monetary terms, is €13500 and the payback period is 5.11 years. Thus, the article proves that despite a higher initial price, the choice of an induction motor of energy efficiency class IE4 tends to be more economically advantageous.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrical Engineering & Electromechanics
Electrical Engineering & Electromechanics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
2.40
自引率
50.00%
发文量
53
审稿时长
10 weeks
期刊最新文献
The mutual influence of exciting and induced currents in the circular solenoid – massive conductor system Current-voltage characteristics of single-stage semiconductor magnetic pulse generators with a distinctive structure of the conversion link in the input circuit Optimal hybrid photovoltaic distributed generation and distribution static synchronous compensators planning to minimize active power losses using adaptive acceleration coefficients particle swarm optimization algorithms Estimation of electrical resistivity of conductive materials of random shapes Modeling and research of a magnetoelectric converter for hydro and pneumo actuators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1