{"title":"使用机器学习识别胆汁盐出口泵抑制剂:从行业角度预测安全性","authors":"Raquel Rodríguez-Pérez, Grégori Gerebtzoff","doi":"10.1016/j.ailsci.2021.100027","DOIUrl":null,"url":null,"abstract":"<div><p>Bile salt export pump (BSEP) is a transporter that moves bile salts from hepatocytes into bile canaliculi. BSEP inhibition can result in the toxic accumulation of bile salts in the liver, which has been identified as a risk factor of drug-induced liver injury (DILI). Since DILI is a frequent cause of drug withdrawals from the market or failings in drug development, <em>in vitro</em> BSEP activity is measured with the [<sup>3</sup>H]taurocholate uptake assay and a half-maximal inhibitory concentration (IC<sub>50</sub>) higher than 30 µM is advised. Herein, a machine learning classification model was developed to accurately detect BSEP inhibitors and help in the prioritization of <em>in vitro</em> testing. Regression models for the numerical prediction of IC<sub>50</sub> values were also generated. Classification and regression models for BSEP inhibition have been evaluated on realistic settings, which is critical prior to ML-based decision making in drug discovery programs. This work illustrates how predictive safety can help in early toxicity risk assessment and compound prioritization by leveraging Novartis historical experimental data.</p></div>","PeriodicalId":72304,"journal":{"name":"Artificial intelligence in the life sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667318521000271/pdfft?md5=015967de1c7a203aefebbda4387e6f24&pid=1-s2.0-S2667318521000271-main.pdf","citationCount":"7","resultStr":"{\"title\":\"Identification of bile salt export pump inhibitors using machine learning: Predictive safety from an industry perspective\",\"authors\":\"Raquel Rodríguez-Pérez, Grégori Gerebtzoff\",\"doi\":\"10.1016/j.ailsci.2021.100027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bile salt export pump (BSEP) is a transporter that moves bile salts from hepatocytes into bile canaliculi. BSEP inhibition can result in the toxic accumulation of bile salts in the liver, which has been identified as a risk factor of drug-induced liver injury (DILI). Since DILI is a frequent cause of drug withdrawals from the market or failings in drug development, <em>in vitro</em> BSEP activity is measured with the [<sup>3</sup>H]taurocholate uptake assay and a half-maximal inhibitory concentration (IC<sub>50</sub>) higher than 30 µM is advised. Herein, a machine learning classification model was developed to accurately detect BSEP inhibitors and help in the prioritization of <em>in vitro</em> testing. Regression models for the numerical prediction of IC<sub>50</sub> values were also generated. Classification and regression models for BSEP inhibition have been evaluated on realistic settings, which is critical prior to ML-based decision making in drug discovery programs. This work illustrates how predictive safety can help in early toxicity risk assessment and compound prioritization by leveraging Novartis historical experimental data.</p></div>\",\"PeriodicalId\":72304,\"journal\":{\"name\":\"Artificial intelligence in the life sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667318521000271/pdfft?md5=015967de1c7a203aefebbda4387e6f24&pid=1-s2.0-S2667318521000271-main.pdf\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial intelligence in the life sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667318521000271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence in the life sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667318521000271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identification of bile salt export pump inhibitors using machine learning: Predictive safety from an industry perspective
Bile salt export pump (BSEP) is a transporter that moves bile salts from hepatocytes into bile canaliculi. BSEP inhibition can result in the toxic accumulation of bile salts in the liver, which has been identified as a risk factor of drug-induced liver injury (DILI). Since DILI is a frequent cause of drug withdrawals from the market or failings in drug development, in vitro BSEP activity is measured with the [3H]taurocholate uptake assay and a half-maximal inhibitory concentration (IC50) higher than 30 µM is advised. Herein, a machine learning classification model was developed to accurately detect BSEP inhibitors and help in the prioritization of in vitro testing. Regression models for the numerical prediction of IC50 values were also generated. Classification and regression models for BSEP inhibition have been evaluated on realistic settings, which is critical prior to ML-based decision making in drug discovery programs. This work illustrates how predictive safety can help in early toxicity risk assessment and compound prioritization by leveraging Novartis historical experimental data.
Artificial intelligence in the life sciencesPharmacology, Biochemistry, Genetics and Molecular Biology (General), Computer Science Applications, Health Informatics, Drug Discovery, Veterinary Science and Veterinary Medicine (General)