配备体积燃料消耗流量计的船舶上测量和计算重质燃料油消耗量和燃料存量的偏差和误差审查

IF 0.5 Q4 TRANSPORTATION Pomorstvo-Scientific Journal of Maritime Research Pub Date : 2021-12-22 DOI:10.31217/p.35.2.12
J. Dujmović, Dean Bernecic
{"title":"配备体积燃料消耗流量计的船舶上测量和计算重质燃料油消耗量和燃料存量的偏差和误差审查","authors":"J. Dujmović, Dean Bernecic","doi":"10.31217/p.35.2.12","DOIUrl":null,"url":null,"abstract":"A common way of measuring heavy fuel oil consumption on board a vessel is to use volumetric fuel flow meters installed at fuel systems inlets for each of the major fuel consumers. At each stage of the fuel processing cycle, certain mass fuel losses or deviations and calculation errors occur that are not counted accurately into fuel consumption figures. The goal of this paper is to identify those fuel mass losses and measuring/calculating errors and perform their quantitative numerical analysis based on actual data. Fuel mass losses defined as deviations identified during the fuel preparation process are evaporation of volatile organic compounds, water drainage, fuel separation, and leakages while errors identified are flow meter accuracy and volumetric/mass flow conversion accuracy. By utilizing statistical analysis of obtained data from engine logbook extracts from three different ships numerical models were generated for each fuel mass loss point. Measuring errors and volumetric/mass conversion errors are numerically analyzed based on actual equipment and models used onboard example vessels. By computational analysis of the obtained models, approximate percentage losses and errors are presented as a fraction of fuel quantity on board or as a fraction of fuel consumed. Those losses and errors present between 0,001% and 5% of fuel stock or fuel consumption figures for each identified loss/error point. This paper presents a contribution for more accurate heavy fuel oil consumption calculation and consequently accurate declaration of remaining fuel stock onboard. It also presents a base for possible further research on the possible influence of fuel grade, fuel water content on the accuracy of consumption calculation.","PeriodicalId":44047,"journal":{"name":"Pomorstvo-Scientific Journal of Maritime Research","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deviations and errors review on measuring and calculating heavy fuel oil consumption and fuel stock onboard vessels equipped with volumetric fuel consumption flowmeters\",\"authors\":\"J. Dujmović, Dean Bernecic\",\"doi\":\"10.31217/p.35.2.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common way of measuring heavy fuel oil consumption on board a vessel is to use volumetric fuel flow meters installed at fuel systems inlets for each of the major fuel consumers. At each stage of the fuel processing cycle, certain mass fuel losses or deviations and calculation errors occur that are not counted accurately into fuel consumption figures. The goal of this paper is to identify those fuel mass losses and measuring/calculating errors and perform their quantitative numerical analysis based on actual data. Fuel mass losses defined as deviations identified during the fuel preparation process are evaporation of volatile organic compounds, water drainage, fuel separation, and leakages while errors identified are flow meter accuracy and volumetric/mass flow conversion accuracy. By utilizing statistical analysis of obtained data from engine logbook extracts from three different ships numerical models were generated for each fuel mass loss point. Measuring errors and volumetric/mass conversion errors are numerically analyzed based on actual equipment and models used onboard example vessels. By computational analysis of the obtained models, approximate percentage losses and errors are presented as a fraction of fuel quantity on board or as a fraction of fuel consumed. Those losses and errors present between 0,001% and 5% of fuel stock or fuel consumption figures for each identified loss/error point. This paper presents a contribution for more accurate heavy fuel oil consumption calculation and consequently accurate declaration of remaining fuel stock onboard. It also presents a base for possible further research on the possible influence of fuel grade, fuel water content on the accuracy of consumption calculation.\",\"PeriodicalId\":44047,\"journal\":{\"name\":\"Pomorstvo-Scientific Journal of Maritime Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pomorstvo-Scientific Journal of Maritime Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31217/p.35.2.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pomorstvo-Scientific Journal of Maritime Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31217/p.35.2.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 1

摘要

测量船上重质燃油消耗量的一种常见方法是使用安装在每个主要燃料消耗器的燃料系统入口处的体积燃料流量计。在燃料处理循环的每个阶段,都会出现某些质量燃料损失或偏差以及计算错误,这些损失或偏差和计算错误没有准确计入燃料消耗数据。本文的目的是识别这些燃料质量损失和测量/计算误差,并根据实际数据进行定量数值分析。定义为燃料制备过程中确定的偏差的燃料质量损失是挥发性有机化合物的蒸发、排水、燃料分离和泄漏,而确定的误差是流量计精度和体积/质量流量转换精度。通过对从发动机日志中获得的数据进行统计分析,生成了三种不同船舶的每个燃料质量损失点的数值模型。基于船上使用的实际设备和模型,对测量误差和体积/质量转换误差进行了数值分析。通过对所获得的模型进行计算分析,损失和误差的近似百分比表示为船上燃料量的分数或消耗燃料的分数。对于每个确定的损失/误差点,这些损失和误差占燃料库存或燃料消耗数据的0001%至5%。本文为更准确的重质燃料油消耗量计算以及船上剩余燃料库存的准确申报做出了贡献。这也为进一步研究燃料等级、燃料含水量对油耗计算精度的可能影响提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deviations and errors review on measuring and calculating heavy fuel oil consumption and fuel stock onboard vessels equipped with volumetric fuel consumption flowmeters
A common way of measuring heavy fuel oil consumption on board a vessel is to use volumetric fuel flow meters installed at fuel systems inlets for each of the major fuel consumers. At each stage of the fuel processing cycle, certain mass fuel losses or deviations and calculation errors occur that are not counted accurately into fuel consumption figures. The goal of this paper is to identify those fuel mass losses and measuring/calculating errors and perform their quantitative numerical analysis based on actual data. Fuel mass losses defined as deviations identified during the fuel preparation process are evaporation of volatile organic compounds, water drainage, fuel separation, and leakages while errors identified are flow meter accuracy and volumetric/mass flow conversion accuracy. By utilizing statistical analysis of obtained data from engine logbook extracts from three different ships numerical models were generated for each fuel mass loss point. Measuring errors and volumetric/mass conversion errors are numerically analyzed based on actual equipment and models used onboard example vessels. By computational analysis of the obtained models, approximate percentage losses and errors are presented as a fraction of fuel quantity on board or as a fraction of fuel consumed. Those losses and errors present between 0,001% and 5% of fuel stock or fuel consumption figures for each identified loss/error point. This paper presents a contribution for more accurate heavy fuel oil consumption calculation and consequently accurate declaration of remaining fuel stock onboard. It also presents a base for possible further research on the possible influence of fuel grade, fuel water content on the accuracy of consumption calculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊最新文献
Analysis and Comparison of Main Steam Turbines from Four Different Thermal Power Plants International Marine Tourism A Port Entry Risk Assessment Model Based on Bayesian Networks and Elements of the e-Navigation Concept Mechanical Properties Evaluation of Laminated Composites of Petung Bamboo (Dendrocalamus asper) and Coconut Coir Fiber as Ship Construction Components Traffic Microsimulation of the Main Junction Connecting the Urban Road Network with the Sea-Port Container Terminal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1