基于迁移学习的端到端库尔德语语音合成

Sabat Muhamad, H. Veisi
{"title":"基于迁移学习的端到端库尔德语语音合成","authors":"Sabat Muhamad, H. Veisi","doi":"10.24271/psr.2022.351832.1149","DOIUrl":null,"url":null,"abstract":"A text-to-speech (TTS) system converts the texts into speech in a specific language. Several TTS systems generate natural-like speech signals in numerous languages, such as English. On the other hand, the Kurdish language has just been examined. Existing preliminary research on Kurdish speech synthesis has utilized old methods and has generated low-quality speech. They also lack important aspects of speech, including intonation, emphasis, and rhythm. Some approaches were presented to address these challenges, including the use of concatenative systems. For example, the unit selection or statistical parametric methods. On the other hand, they need a great deal of time, effort, and domain knowledge. An additional factor for Kurdish speech synthesizers' low performance is the absence of publicly available speech corpora, unlike English, which has many freely-available corpora and audiobooks. The motivation of this paper is to create a Central Kurdish speech corpus and generate a human-like speech from the Kurdish text. This paper explains how to utilize Tacotron 2, an end-to-end neural network architecture and HiFi-GAN vocoder, to produce a high-quality, realistic, and human-like Kurdish voice. This work utilizes \"text, audio\" pairings, which contain 10 hours of recorded audio samples and texts collected from the Internet and textbooks. It shows how to use English character embedding as the pre-trained knowledge with Kurdish characters as input and how to preprocess these audio examples to get a great outcome. Our evaluations for various types of texts show a mean opinion score of 4.1, comparable with state-of-the-art synthesizers in other languages. 2022 Production by the University of Garmian. This is an open access article under the LICENSE https://creativecommons.org/licenses/by-nc/4.0/","PeriodicalId":33835,"journal":{"name":"Passer Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"End-to-End Kurdish Speech Synthesis Based on Transfer Learning\",\"authors\":\"Sabat Muhamad, H. Veisi\",\"doi\":\"10.24271/psr.2022.351832.1149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A text-to-speech (TTS) system converts the texts into speech in a specific language. Several TTS systems generate natural-like speech signals in numerous languages, such as English. On the other hand, the Kurdish language has just been examined. Existing preliminary research on Kurdish speech synthesis has utilized old methods and has generated low-quality speech. They also lack important aspects of speech, including intonation, emphasis, and rhythm. Some approaches were presented to address these challenges, including the use of concatenative systems. For example, the unit selection or statistical parametric methods. On the other hand, they need a great deal of time, effort, and domain knowledge. An additional factor for Kurdish speech synthesizers' low performance is the absence of publicly available speech corpora, unlike English, which has many freely-available corpora and audiobooks. The motivation of this paper is to create a Central Kurdish speech corpus and generate a human-like speech from the Kurdish text. This paper explains how to utilize Tacotron 2, an end-to-end neural network architecture and HiFi-GAN vocoder, to produce a high-quality, realistic, and human-like Kurdish voice. This work utilizes \\\"text, audio\\\" pairings, which contain 10 hours of recorded audio samples and texts collected from the Internet and textbooks. It shows how to use English character embedding as the pre-trained knowledge with Kurdish characters as input and how to preprocess these audio examples to get a great outcome. Our evaluations for various types of texts show a mean opinion score of 4.1, comparable with state-of-the-art synthesizers in other languages. 2022 Production by the University of Garmian. This is an open access article under the LICENSE https://creativecommons.org/licenses/by-nc/4.0/\",\"PeriodicalId\":33835,\"journal\":{\"name\":\"Passer Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Passer Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24271/psr.2022.351832.1149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Passer Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24271/psr.2022.351832.1149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

文本到语音(TTS)系统将文本转换成特定语言的语音。一些TTS系统可以生成多种语言(如英语)的类似自然的语音信号。另一方面,库尔德语刚刚被研究过。现有的库尔德语语音合成的初步研究使用了旧的方法,产生了低质量的语音。他们也缺乏说话的重要方面,包括语调、重音和节奏。提出了一些方法来解决这些挑战,包括使用串联系统。例如,单位选择或统计参数方法。另一方面,它们需要大量的时间、精力和领域知识。库尔德语语音合成器性能低下的另一个因素是缺乏公开的语音语料库,不像英语有许多免费的语料库和有声读物。本文的动机是创建一个中央库尔德语语料库,并从库尔德语文本中生成类似人类的语音。本文解释了如何利用Tacotron 2,一个端到端神经网络架构和HiFi-GAN声码器,来产生高质量的,逼真的,像人一样的库尔德声音。这个作品采用了“文本,音频”配对,包含了从互联网和教科书中收集的10个小时的录音样本和文本。它展示了如何使用英语字符嵌入作为预训练的知识,并以库尔德字符作为输入,以及如何预处理这些音频示例以获得良好的效果。我们对各种类型文本的评估显示,平均意见得分为4.1,与其他语言的最先进的合成器相当。2022年由加尔米安大学制作。这是一篇在https://creativecommons.org/licenses/by-nc/4.0/许可下的开放获取文章
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
End-to-End Kurdish Speech Synthesis Based on Transfer Learning
A text-to-speech (TTS) system converts the texts into speech in a specific language. Several TTS systems generate natural-like speech signals in numerous languages, such as English. On the other hand, the Kurdish language has just been examined. Existing preliminary research on Kurdish speech synthesis has utilized old methods and has generated low-quality speech. They also lack important aspects of speech, including intonation, emphasis, and rhythm. Some approaches were presented to address these challenges, including the use of concatenative systems. For example, the unit selection or statistical parametric methods. On the other hand, they need a great deal of time, effort, and domain knowledge. An additional factor for Kurdish speech synthesizers' low performance is the absence of publicly available speech corpora, unlike English, which has many freely-available corpora and audiobooks. The motivation of this paper is to create a Central Kurdish speech corpus and generate a human-like speech from the Kurdish text. This paper explains how to utilize Tacotron 2, an end-to-end neural network architecture and HiFi-GAN vocoder, to produce a high-quality, realistic, and human-like Kurdish voice. This work utilizes "text, audio" pairings, which contain 10 hours of recorded audio samples and texts collected from the Internet and textbooks. It shows how to use English character embedding as the pre-trained knowledge with Kurdish characters as input and how to preprocess these audio examples to get a great outcome. Our evaluations for various types of texts show a mean opinion score of 4.1, comparable with state-of-the-art synthesizers in other languages. 2022 Production by the University of Garmian. This is an open access article under the LICENSE https://creativecommons.org/licenses/by-nc/4.0/
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
23
审稿时长
12 weeks
期刊最新文献
Study of Algal Diatoms in some water resources in Shaglawa District. Erbil, Kurdistan Region of Iraq Antibacterial Efficacy of Extraction of Salvia palaestina Bentham Characterization of biochemical compounds in different accessions of pomegranate (Punica granatum L.) peels in Iraq Lavender Essential Oil in Sanitation on Fertile Egg Exploring efficient techniques to decrease phosphorus levels in previously farmed land to promote the revival of indigenous grassland
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1