Evangelos Tsipas, Theodoros Panagiotis Chatzinikolaou, Karolos-Alexandros Tsakalos, K. Rallis, Rafailia-Eleni Karamani, Iosif-Angelos Fyrigos, Stavros Kitsios, P. Bousoulas, Dimitrios Tsoukalas, G. Sirakoulis
{"title":"忆阻纳米电路的非常规计算","authors":"Evangelos Tsipas, Theodoros Panagiotis Chatzinikolaou, Karolos-Alexandros Tsakalos, K. Rallis, Rafailia-Eleni Karamani, Iosif-Angelos Fyrigos, Stavros Kitsios, P. Bousoulas, Dimitrios Tsoukalas, G. Sirakoulis","doi":"10.1109/MNANO.2022.3208723","DOIUrl":null,"url":null,"abstract":"Computing demands are growing rapidly as bigdata and artificial intelligence applications become increasingly tasking. Bio-inspired and quantum-based techniques are proving to be quite promising for the development of novel circuits and systems. These systems can contribute to the resolution of a wider variety of problems while also providing improvements to existing techniques. As the von Neumann architecture’s expected performance, which has been dominant for the past several decades, is now hindered by physical limitations, novel computing architectures, assisted by novel materials and circuit devices, are starting to emerge and provide promising results. The topic of this work is to examine the memory and computing capabilities of emergent memristor-based nanocircuits and demonstrate their advantages compared to their classical counterparts.","PeriodicalId":44724,"journal":{"name":"IEEE Nanotechnology Magazine","volume":"16 1","pages":"22-33"},"PeriodicalIF":2.3000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unconventional Computing With Memristive Nanocircuits\",\"authors\":\"Evangelos Tsipas, Theodoros Panagiotis Chatzinikolaou, Karolos-Alexandros Tsakalos, K. Rallis, Rafailia-Eleni Karamani, Iosif-Angelos Fyrigos, Stavros Kitsios, P. Bousoulas, Dimitrios Tsoukalas, G. Sirakoulis\",\"doi\":\"10.1109/MNANO.2022.3208723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing demands are growing rapidly as bigdata and artificial intelligence applications become increasingly tasking. Bio-inspired and quantum-based techniques are proving to be quite promising for the development of novel circuits and systems. These systems can contribute to the resolution of a wider variety of problems while also providing improvements to existing techniques. As the von Neumann architecture’s expected performance, which has been dominant for the past several decades, is now hindered by physical limitations, novel computing architectures, assisted by novel materials and circuit devices, are starting to emerge and provide promising results. The topic of this work is to examine the memory and computing capabilities of emergent memristor-based nanocircuits and demonstrate their advantages compared to their classical counterparts.\",\"PeriodicalId\":44724,\"journal\":{\"name\":\"IEEE Nanotechnology Magazine\",\"volume\":\"16 1\",\"pages\":\"22-33\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nanotechnology Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MNANO.2022.3208723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nanotechnology Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNANO.2022.3208723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Unconventional Computing With Memristive Nanocircuits
Computing demands are growing rapidly as bigdata and artificial intelligence applications become increasingly tasking. Bio-inspired and quantum-based techniques are proving to be quite promising for the development of novel circuits and systems. These systems can contribute to the resolution of a wider variety of problems while also providing improvements to existing techniques. As the von Neumann architecture’s expected performance, which has been dominant for the past several decades, is now hindered by physical limitations, novel computing architectures, assisted by novel materials and circuit devices, are starting to emerge and provide promising results. The topic of this work is to examine the memory and computing capabilities of emergent memristor-based nanocircuits and demonstrate their advantages compared to their classical counterparts.
期刊介绍:
IEEE Nanotechnology Magazine publishes peer-reviewed articles that present emerging trends and practices in industrial electronics product research and development, key insights, and tutorial surveys in the field of interest to the member societies of the IEEE Nanotechnology Council. IEEE Nanotechnology Magazine will be limited to the scope of the Nanotechnology Council, which supports the theory, design, and development of nanotechnology and its scientific, engineering, and industrial applications.