基于MOWS的高性能亚硫酸盐电化学传感器₂ 纳米复合材料修饰电极

IF 1.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanostructures Pub Date : 2020-04-01 DOI:10.22052/JNS.2020.02.013
Mohammad Reza Aflatoonian, S. Tajik, Hadi Beitollai, Somayeh Mohammadi, P. Jahani
{"title":"基于MOWS的高性能亚硫酸盐电化学传感器₂ 纳米复合材料修饰电极","authors":"Mohammad Reza Aflatoonian, S. Tajik, Hadi Beitollai, Somayeh Mohammadi, P. Jahani","doi":"10.22052/JNS.2020.02.013","DOIUrl":null,"url":null,"abstract":"The present study reports synthesis of MOWS2 nanocomposite followed by its characterization using energy dispersive X-ray spectroscopy (EDS), X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Chronoamperometry (CHA), differential pulse voltammetry (DPV), and cyclic voltammetry (CV) have been used to examine electro-chemical behaviors of sulfite on MOWS2 nanocomposite modified SPE. Electro-chemical specification indicated very good electro-catalytic activities and surface area impact of MOWS2 nanocomposite. Oxidation signals of sulfite on MOWS2/SPE has been considerably increased in comparison to the bare SPE. Within optimum conditions, quantification of sulfite might range between 0.08 to 700.0 µM with a small determination limit of 0.02 µM based on S/N=3.The impact of scan rates has been explored. Finally, the MOWS2/SPE has been employed for detection of sulfite in real specimens. In general, an easy experimental method for manufacturing MOWS2 nanocomposite has been suggested that takes advantage of selectivity, reproducibility, and sensitivity toward electro-active specimens, as well as biological matrices.","PeriodicalId":16523,"journal":{"name":"Journal of Nanostructures","volume":"10 1","pages":"337-347"},"PeriodicalIF":1.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A High Performance Electrochemical Sensor for Sulfite Based on MOWS₂ Nanocomposite Modified Electrode\",\"authors\":\"Mohammad Reza Aflatoonian, S. Tajik, Hadi Beitollai, Somayeh Mohammadi, P. Jahani\",\"doi\":\"10.22052/JNS.2020.02.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study reports synthesis of MOWS2 nanocomposite followed by its characterization using energy dispersive X-ray spectroscopy (EDS), X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Chronoamperometry (CHA), differential pulse voltammetry (DPV), and cyclic voltammetry (CV) have been used to examine electro-chemical behaviors of sulfite on MOWS2 nanocomposite modified SPE. Electro-chemical specification indicated very good electro-catalytic activities and surface area impact of MOWS2 nanocomposite. Oxidation signals of sulfite on MOWS2/SPE has been considerably increased in comparison to the bare SPE. Within optimum conditions, quantification of sulfite might range between 0.08 to 700.0 µM with a small determination limit of 0.02 µM based on S/N=3.The impact of scan rates has been explored. Finally, the MOWS2/SPE has been employed for detection of sulfite in real specimens. In general, an easy experimental method for manufacturing MOWS2 nanocomposite has been suggested that takes advantage of selectivity, reproducibility, and sensitivity toward electro-active specimens, as well as biological matrices.\",\"PeriodicalId\":16523,\"journal\":{\"name\":\"Journal of Nanostructures\",\"volume\":\"10 1\",\"pages\":\"337-347\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/JNS.2020.02.013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/JNS.2020.02.013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究报道了MOWS2纳米复合材料的合成,并利用能谱(EDS)、x射线衍射(XRD)和场发射扫描电镜(FESEM)对其进行了表征。采用计时电流法(CHA)、差分脉冲伏安法(DPV)和循环伏安法(CV)研究了亚硫酸盐在MOWS2纳米复合材料改性SPE上的电化学行为。电化学指标表明,氧化钨纳米复合材料具有良好的电催化活性和比表面积影响。亚硫酸盐在MOWS2/SPE上的氧化信号比在裸SPE上明显增加。在最佳条件下,亚硫酸盐的定量范围为0.08 ~ 700.0µM,在S/N=3的条件下,亚硫酸盐的下限为0.02µM。研究了扫描速率的影响。最后,利用MOWS2/SPE对实际样品中的亚硫酸盐进行了检测。总的来说,已经提出了一种简单的实验方法来制造MOWS2纳米复合材料,该方法利用了选择性,重复性和对电活性样品以及生物基质的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A High Performance Electrochemical Sensor for Sulfite Based on MOWS₂ Nanocomposite Modified Electrode
The present study reports synthesis of MOWS2 nanocomposite followed by its characterization using energy dispersive X-ray spectroscopy (EDS), X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). Chronoamperometry (CHA), differential pulse voltammetry (DPV), and cyclic voltammetry (CV) have been used to examine electro-chemical behaviors of sulfite on MOWS2 nanocomposite modified SPE. Electro-chemical specification indicated very good electro-catalytic activities and surface area impact of MOWS2 nanocomposite. Oxidation signals of sulfite on MOWS2/SPE has been considerably increased in comparison to the bare SPE. Within optimum conditions, quantification of sulfite might range between 0.08 to 700.0 µM with a small determination limit of 0.02 µM based on S/N=3.The impact of scan rates has been explored. Finally, the MOWS2/SPE has been employed for detection of sulfite in real specimens. In general, an easy experimental method for manufacturing MOWS2 nanocomposite has been suggested that takes advantage of selectivity, reproducibility, and sensitivity toward electro-active specimens, as well as biological matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanostructures
Journal of Nanostructures NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍: Journal of Nanostructures is a medium for global academics to exchange and disseminate their knowledge as well as the latest discoveries and advances in the science and engineering of nanostructured materials. Topics covered in the journal include, but are not limited to the following: Nanosystems for solar cell, energy, catalytic and environmental applications Quantum dots, nanocrystalline materials, nanoparticles, nanocomposites Characterization of nanostructures and size dependent properties Fullerenes, carbon nanotubes and graphene Self-assembly and molecular organization Super hydrophobic surface and material Synthesis of nanostructured materials Nanobiotechnology and nanomedicine Functionalization of nanostructures Nanomagnetics Nanosensors.
期刊最新文献
Assembling a Bunch of Transition Metals Oxides on Sodium Montmorillonite Layer for Anionic Polymerization of Butyl Methyl Acrylate Antimicrobial and Cytotoxic Activity of Platinum Nanoparticles Synthesized by Laser Ablation Technique Facile Synthesis of Fe/ZnO Hollow Spheres Nanostructures by Green Approach for the Photodegradation and Removal of Organic Dye Contaminants in Water Nanostructured Tin Sulfide Thin Films: Preparation via Chemical Bath Deposition and Characterization Sonochemical Preparation of Magnesium Hydroxide and Aluminum Hydroxide Nanoparticles for Flame Retardancy and Thermal Stability of Cellulose Acetate and Wood
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1