用贝叶斯分段增长曲线模型处理复杂的非线性轨迹

Luca Marvin, Haiyan Liu, S. Depaoli
{"title":"用贝叶斯分段增长曲线模型处理复杂的非线性轨迹","authors":"Luca Marvin, Haiyan Liu, S. Depaoli","doi":"10.35566/jbds/v3n1/marvin","DOIUrl":null,"url":null,"abstract":"Bayesian growth curve modeling is a popular method for studying longitudinal data. In this study, we discuss a flexible extension, the Bayesian piecewise growth curve model (BPGCM), which allows the researcher to break up a trajectory into phases joined at change points called knots. By fitting BPGCMs, the researcher can specify three or more phases of growth without concern for model identification. Our goal is to provide substantive researchers with a guide for implementing this important class of models. We present a simple application of Bayesian linear BPGCMs to childrens' math achievement. Our tutorial includes Mplus code, strategies for specifying knots, and how to interpret model selection and fit indices. Extensions of the model are discussed.","PeriodicalId":93575,"journal":{"name":"Journal of behavioral data science","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Bayesian Piecewise Growth Curve Models to Handle Complex Nonlinear Trajectories\",\"authors\":\"Luca Marvin, Haiyan Liu, S. Depaoli\",\"doi\":\"10.35566/jbds/v3n1/marvin\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian growth curve modeling is a popular method for studying longitudinal data. In this study, we discuss a flexible extension, the Bayesian piecewise growth curve model (BPGCM), which allows the researcher to break up a trajectory into phases joined at change points called knots. By fitting BPGCMs, the researcher can specify three or more phases of growth without concern for model identification. Our goal is to provide substantive researchers with a guide for implementing this important class of models. We present a simple application of Bayesian linear BPGCMs to childrens' math achievement. Our tutorial includes Mplus code, strategies for specifying knots, and how to interpret model selection and fit indices. Extensions of the model are discussed.\",\"PeriodicalId\":93575,\"journal\":{\"name\":\"Journal of behavioral data science\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of behavioral data science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35566/jbds/v3n1/marvin\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of behavioral data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35566/jbds/v3n1/marvin","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯生长曲线建模是研究纵向数据的常用方法。在这项研究中,我们讨论了一个灵活的扩展,贝叶斯分段增长曲线模型(BPGCM),它允许研究人员将轨迹分解为在称为结点的变化点连接的阶段。通过拟合bpgcm,研究人员可以指定三个或更多的生长阶段,而无需考虑模型识别。我们的目标是为实质性的研究人员提供实现这类重要模型的指南。我们提出了贝叶斯线性bpgcm在儿童数学成绩中的一个简单应用。我们的教程包括Mplus代码,指定结的策略,以及如何解释模型选择和拟合指数。讨论了模型的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Bayesian Piecewise Growth Curve Models to Handle Complex Nonlinear Trajectories
Bayesian growth curve modeling is a popular method for studying longitudinal data. In this study, we discuss a flexible extension, the Bayesian piecewise growth curve model (BPGCM), which allows the researcher to break up a trajectory into phases joined at change points called knots. By fitting BPGCMs, the researcher can specify three or more phases of growth without concern for model identification. Our goal is to provide substantive researchers with a guide for implementing this important class of models. We present a simple application of Bayesian linear BPGCMs to childrens' math achievement. Our tutorial includes Mplus code, strategies for specifying knots, and how to interpret model selection and fit indices. Extensions of the model are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rephrasing the Lengthy and Involved Proof of Kristof’s Theorem: A Tutorial with Some New Findings Stability and Spread: Transition Metrics that are Robust to Time Interval Misspecification A Novel Approach for Identifying Unobserved Heterogeneity in Longitudinal Growth Trajectories Using Natural Cubic Smoothing Splines A Proof-of-Concept Study Demonstrating How FITBIR Datasets Can be Harmonized to Examine Posttraumatic Stress Disorder-Traumatic Brain Injury Associations Loss Aversion Distribution: The Science Behind Loss Aversion Exhibited by Sellers of Perishable Good
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1