当预测器和响应是函数时,预测的最佳速率

IF 2 2区 数学 Q1 MATHEMATICS Analysis and Applications Pub Date : 2020-06-06 DOI:10.1142/s0219530520500037
Yang Zhou, Dirong Chen
{"title":"当预测器和响应是函数时,预测的最佳速率","authors":"Yang Zhou, Dirong Chen","doi":"10.1142/s0219530520500037","DOIUrl":null,"url":null,"abstract":"In functional data analysis, linear prediction problems have been widely studied based on the functional linear regression model. However, restrictive condition is needed to ensure the existence of the coefficient function. In this paper, a general linear prediction model is considered on the framework of reproducing kernel Hilbert space, which includes both the functional linear regression model and the point impact model. We show that from the point view of prediction, this general model works as well even the coefficient function does not exist. Moreover, under mild conditions, the minimax optimal rate of convergence is established for the prediction under the integrated mean squared prediction error. In particular, the rate reduces to the existing result when the coefficient function exists.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219530520500037","citationCount":"0","resultStr":"{\"title\":\"Optimal rate for prediction when predictor and response are functions\",\"authors\":\"Yang Zhou, Dirong Chen\",\"doi\":\"10.1142/s0219530520500037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In functional data analysis, linear prediction problems have been widely studied based on the functional linear regression model. However, restrictive condition is needed to ensure the existence of the coefficient function. In this paper, a general linear prediction model is considered on the framework of reproducing kernel Hilbert space, which includes both the functional linear regression model and the point impact model. We show that from the point view of prediction, this general model works as well even the coefficient function does not exist. Moreover, under mild conditions, the minimax optimal rate of convergence is established for the prediction under the integrated mean squared prediction error. In particular, the rate reduces to the existing result when the coefficient function exists.\",\"PeriodicalId\":55519,\"journal\":{\"name\":\"Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/s0219530520500037\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219530520500037\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530520500037","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在函数数据分析中,基于函数线性回归模型的线性预测问题得到了广泛的研究。然而,为了保证系数函数的存在,需要有一个约束条件。本文在再现核希尔伯特空间的框架下,考虑了一个通用的线性预测模型,该模型包括函数线性回归模型和点影响模型。我们证明,从预测的角度来看,即使不存在系数函数,这个通用模型也能很好地工作。此外,在温和条件下,在积分均方预测误差下,建立了预测的最小最大最优收敛率。特别地,当系数函数存在时,速率减小到现有结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal rate for prediction when predictor and response are functions
In functional data analysis, linear prediction problems have been widely studied based on the functional linear regression model. However, restrictive condition is needed to ensure the existence of the coefficient function. In this paper, a general linear prediction model is considered on the framework of reproducing kernel Hilbert space, which includes both the functional linear regression model and the point impact model. We show that from the point view of prediction, this general model works as well even the coefficient function does not exist. Moreover, under mild conditions, the minimax optimal rate of convergence is established for the prediction under the integrated mean squared prediction error. In particular, the rate reduces to the existing result when the coefficient function exists.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
期刊最新文献
On the strong solution for a diffuse interface model of non-Newtonian two-phase flows Distributed SGD in Overparameterized Linear Regression Interpolatory Taylor and Lidstone series Author index Volume 21 (2023) Convergence Analysis of Deep Residual Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1