界面能量构成器件

IF 2.9 Q3 CHEMISTRY, PHYSICAL Electronic Structure Pub Date : 2022-08-09 DOI:10.1088/2516-1075/ac884d
S. Duhm
{"title":"界面能量构成器件","authors":"S. Duhm","doi":"10.1088/2516-1075/ac884d","DOIUrl":null,"url":null,"abstract":"The energy-level alignment at the ubiquitous interfaces of optoelectronic devices is decisive for their performance and almost all pertinent publications include energy-level diagrams (ELDs). However, in most of these ELDs vacuum-level alignment across the complete heterojunction is assumed, which is oversimplified. On the contrary, the functioning of virtually all optoelectronic devices relies on interface phenomena like band bending, interface dipoles or potential drops. Consequently, such oversimplified ELDs do not help to understand the working mechanism of devices and have limited meaning. In this focus article, we give best practice rules for drawing ELDs: (1) give references for all the values of an ELD. (2) Mention the methods which have been used to obtain these values. (3) Add a disclaimer about the limitations of the ELD. (4) Measure as many energy levels as possible.","PeriodicalId":42419,"journal":{"name":"Electronic Structure","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Interface energetics make devices\",\"authors\":\"S. Duhm\",\"doi\":\"10.1088/2516-1075/ac884d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The energy-level alignment at the ubiquitous interfaces of optoelectronic devices is decisive for their performance and almost all pertinent publications include energy-level diagrams (ELDs). However, in most of these ELDs vacuum-level alignment across the complete heterojunction is assumed, which is oversimplified. On the contrary, the functioning of virtually all optoelectronic devices relies on interface phenomena like band bending, interface dipoles or potential drops. Consequently, such oversimplified ELDs do not help to understand the working mechanism of devices and have limited meaning. In this focus article, we give best practice rules for drawing ELDs: (1) give references for all the values of an ELD. (2) Mention the methods which have been used to obtain these values. (3) Add a disclaimer about the limitations of the ELD. (4) Measure as many energy levels as possible.\",\"PeriodicalId\":42419,\"journal\":{\"name\":\"Electronic Structure\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Structure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2516-1075/ac884d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Structure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1075/ac884d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7

摘要

光电子器件普遍存在的界面处的能级排列对其性能起决定性作用,几乎所有相关出版物都包括能级图(ELD)。然而,在大多数ELD中,假设整个异质结的真空水平对准,这过于简单化了。相反,几乎所有光电子器件的功能都依赖于界面现象,如带弯曲、界面偶极子或电位降。因此,这种过于简单化的ELD无助于理解设备的工作机制,意义有限。在这篇重点文章中,我们给出了绘制ELD的最佳实践规则:(1)给出ELD的所有值的参考。(2) 提及用于获得这些值的方法。(3) 添加关于ELD限制的免责声明。(4) 测量尽可能多的能量水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interface energetics make devices
The energy-level alignment at the ubiquitous interfaces of optoelectronic devices is decisive for their performance and almost all pertinent publications include energy-level diagrams (ELDs). However, in most of these ELDs vacuum-level alignment across the complete heterojunction is assumed, which is oversimplified. On the contrary, the functioning of virtually all optoelectronic devices relies on interface phenomena like band bending, interface dipoles or potential drops. Consequently, such oversimplified ELDs do not help to understand the working mechanism of devices and have limited meaning. In this focus article, we give best practice rules for drawing ELDs: (1) give references for all the values of an ELD. (2) Mention the methods which have been used to obtain these values. (3) Add a disclaimer about the limitations of the ELD. (4) Measure as many energy levels as possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
11.50%
发文量
46
期刊最新文献
Improving the precision of work-function calculations within plane-wave density functional theory Self-similarity of quantum transport in graphene using electrostatic gate and substrate Facilities and practices for linear response Hubbard parameters U and J in Abinit Approaching periodic systems in ensemble density functional theory via finite one-dimensional models Doping dependence and multichannel mediators of superconductivity: calculations for a cuprate model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1