用富含氧气和抗氧化剂的作物征服太空

S. K. Polutchko, W. W. Adams, Christine M. Escobar, B. Demmig-Adams
{"title":"用富含氧气和抗氧化剂的作物征服太空","authors":"S. K. Polutchko, W. W. Adams, Christine M. Escobar, B. Demmig-Adams","doi":"10.3390/oxygen2020016","DOIUrl":null,"url":null,"abstract":"Sustainable long-term space missions require regenerative life support from plants. Traditional crop plants lack some features desirable for use in space environments. The aquatic plant family Lemnaceae (duckweeds) has enormous potential as a space crop, featuring (i) fast growth, with very high rates of O2 production and CO2 sequestration, (ii) an exceptional nutritional quality (with respect to radiation-fighting antioxidants and high-quality protein), (iii) easy propagation and high productivity in small spaces, and (iv) resilience to the stresses (radiation, microgravity, and elevated CO2) of the human-inhabited space environment. These traits of Lemnaceae are placed into the context of their unique adaptations to the aquatic environment. Furthermore, an overview is provided of the challenges of galactic cosmic radiation to plant and human physiology and the mechanisms involved in oxidative injury and the prevention/mitigation of such effects by antioxidant micronutrients. A focus is placed on the carotenoid zeaxanthin accumulated by Lemnaceae in unusually high amounts and its role in counteracting system-wide inflammation, cognitive dysfunction, and other oxidative injuries in humans.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Conquering Space with Crops That Produce Ample Oxygen and Antioxidants\",\"authors\":\"S. K. Polutchko, W. W. Adams, Christine M. Escobar, B. Demmig-Adams\",\"doi\":\"10.3390/oxygen2020016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sustainable long-term space missions require regenerative life support from plants. Traditional crop plants lack some features desirable for use in space environments. The aquatic plant family Lemnaceae (duckweeds) has enormous potential as a space crop, featuring (i) fast growth, with very high rates of O2 production and CO2 sequestration, (ii) an exceptional nutritional quality (with respect to radiation-fighting antioxidants and high-quality protein), (iii) easy propagation and high productivity in small spaces, and (iv) resilience to the stresses (radiation, microgravity, and elevated CO2) of the human-inhabited space environment. These traits of Lemnaceae are placed into the context of their unique adaptations to the aquatic environment. Furthermore, an overview is provided of the challenges of galactic cosmic radiation to plant and human physiology and the mechanisms involved in oxidative injury and the prevention/mitigation of such effects by antioxidant micronutrients. A focus is placed on the carotenoid zeaxanthin accumulated by Lemnaceae in unusually high amounts and its role in counteracting system-wide inflammation, cognitive dysfunction, and other oxidative injuries in humans.\",\"PeriodicalId\":74387,\"journal\":{\"name\":\"Oxygen (Basel, Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxygen (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/oxygen2020016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxygen (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/oxygen2020016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

可持续的长期太空任务需要植物的再生生命支持。传统作物缺乏一些适合在太空环境中使用的特性。水生植物兰科(浮萍)作为太空作物具有巨大的潜力,具有以下特点:(1)快速生长,具有非常高的氧气生产和二氧化碳封存率;(2)具有特殊的营养品质(抗辐射抗氧化剂和高质量蛋白质);(3)易于在小空间内繁殖和高产;(4)对人类居住的空间环境的应激(辐射、微重力和二氧化碳浓度上升)具有弹性。柠檬科植物的这些特征与它们对水生环境的独特适应有关。此外,还概述了银河宇宙辐射对植物和人体生理的挑战、氧化损伤所涉及的机制以及抗氧化微量营养素预防/减轻这种影响的方法。重点放在类胡萝卜素玉米黄质在柠檬科积累的异常高的量及其在对抗全系统炎症,认知功能障碍和其他氧化损伤在人类中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Conquering Space with Crops That Produce Ample Oxygen and Antioxidants
Sustainable long-term space missions require regenerative life support from plants. Traditional crop plants lack some features desirable for use in space environments. The aquatic plant family Lemnaceae (duckweeds) has enormous potential as a space crop, featuring (i) fast growth, with very high rates of O2 production and CO2 sequestration, (ii) an exceptional nutritional quality (with respect to radiation-fighting antioxidants and high-quality protein), (iii) easy propagation and high productivity in small spaces, and (iv) resilience to the stresses (radiation, microgravity, and elevated CO2) of the human-inhabited space environment. These traits of Lemnaceae are placed into the context of their unique adaptations to the aquatic environment. Furthermore, an overview is provided of the challenges of galactic cosmic radiation to plant and human physiology and the mechanisms involved in oxidative injury and the prevention/mitigation of such effects by antioxidant micronutrients. A focus is placed on the carotenoid zeaxanthin accumulated by Lemnaceae in unusually high amounts and its role in counteracting system-wide inflammation, cognitive dysfunction, and other oxidative injuries in humans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hypoxia in uterine fibroids: role in pathobiology and therapeutic opportunities. Mitochondrial Dysfunction and Nanocarrier-Based Treatments in Chronic Obstructive Pulmonary Disease (COPD) The Influence of the Atmospheric Electric Field on Soil Redox Potential The Kelch/Nrf2 Antioxidant System as a Target for Some Marine Fungal Metabolites Exploring the Impact of Training Methods on Repeated Sprints in Hypoxia Training Effects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1