Ti–6Al–4V激光粉末床熔覆层厚度对飞溅性能的影响

IF 1.9 4区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Powder Metallurgy Pub Date : 2023-03-27 DOI:10.1080/00325899.2023.2192036
C. Pauzon, Ahmad Raza, Imran Hanif, S. Dubiez-Le Goff, J. Moverare, E. Hryha
{"title":"Ti–6Al–4V激光粉末床熔覆层厚度对飞溅性能的影响","authors":"C. Pauzon, Ahmad Raza, Imran Hanif, S. Dubiez-Le Goff, J. Moverare, E. Hryha","doi":"10.1080/00325899.2023.2192036","DOIUrl":null,"url":null,"abstract":"ABSTRACT High layer thicknesses for laser powder bed fusion are promising for productivity increase. However, these are associated with increased process instability, spatter generation and powder degradation, crucial for alloys sensitive to oxygen. The effect of increasing layer thickness from 30 to 60 µm is studied focusing on Ti-6Al-4V spatter formation during LPBF and its characterisation, with scanning and transmission electron microscopy, combustion analysis and X-ray photoelectron spectroscopy. Results indicate that spatters are covered with a uniform Ti-Al-based oxide layer and Al-rich oxide particulates, the thickness of which is about twice that present on virgin powder. The oxygen content was about 60% higher in spatters compared to the virgin powder. The study highlights that increasing the layer thickness to 60 µm permits to reduce the total generation of spatters by ∼40%, while maintaining similar spatter characteristics and static tensile properties. Hence, this allows to increase build rate without compromising process robustness. Highlights Increased layer thickness from 30 to 60 µm resulted in ∼40% lower amount of spatter generated per build Increased layer thickness from 30 to 60 µm resulted in ∼17% higher amount of generated spatter per scanned layer Increase in bulk oxygen content by >60% was registered for spatter compared to the virgin powder in both cases The oxide layer is about twice thicker on the spatter particles compared to virgin powder","PeriodicalId":20392,"journal":{"name":"Powder Metallurgy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of layer thickness on spatter properties during laser powder bed fusion of Ti–6Al–4V\",\"authors\":\"C. Pauzon, Ahmad Raza, Imran Hanif, S. Dubiez-Le Goff, J. Moverare, E. Hryha\",\"doi\":\"10.1080/00325899.2023.2192036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT High layer thicknesses for laser powder bed fusion are promising for productivity increase. However, these are associated with increased process instability, spatter generation and powder degradation, crucial for alloys sensitive to oxygen. The effect of increasing layer thickness from 30 to 60 µm is studied focusing on Ti-6Al-4V spatter formation during LPBF and its characterisation, with scanning and transmission electron microscopy, combustion analysis and X-ray photoelectron spectroscopy. Results indicate that spatters are covered with a uniform Ti-Al-based oxide layer and Al-rich oxide particulates, the thickness of which is about twice that present on virgin powder. The oxygen content was about 60% higher in spatters compared to the virgin powder. The study highlights that increasing the layer thickness to 60 µm permits to reduce the total generation of spatters by ∼40%, while maintaining similar spatter characteristics and static tensile properties. Hence, this allows to increase build rate without compromising process robustness. Highlights Increased layer thickness from 30 to 60 µm resulted in ∼40% lower amount of spatter generated per build Increased layer thickness from 30 to 60 µm resulted in ∼17% higher amount of generated spatter per scanned layer Increase in bulk oxygen content by >60% was registered for spatter compared to the virgin powder in both cases The oxide layer is about twice thicker on the spatter particles compared to virgin powder\",\"PeriodicalId\":20392,\"journal\":{\"name\":\"Powder Metallurgy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00325899.2023.2192036\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00325899.2023.2192036","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

激光粉末床熔敷层厚度越高,生产效率越高。然而,这些都与工艺不稳定性增加、飞溅产生和粉末降解有关,这对于对氧敏感的合金至关重要。通过扫描电镜、透射电镜、燃烧分析和x射线光电子能谱分析,研究了层厚从30µm增加到60µm对LPBF过程中Ti-6Al-4V飞溅的影响及其表征。结果表明,溅射物表面覆盖着均匀的ti - al基氧化物层和富al氧化物颗粒,其厚度约为原始粉末的两倍。与原始粉末相比,飞溅物中的氧含量高出约60%。该研究强调,将层厚度增加到60µm可以将溅射的总产生减少约40%,同时保持相似的溅射特性和静态拉伸性能。因此,这允许在不影响流程健壮性的情况下提高构建率。将层厚度从30µm增加到60µm,导致每次构建产生的飞溅量减少约40%;将层厚度从30µm增加到60µm,导致每扫描层产生的飞溅量增加约17%;在两种情况下,与原始粉末相比,飞溅的总体氧含量增加了约60%;与原始粉末相比,飞溅颗粒上的氧化层厚约两倍
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of layer thickness on spatter properties during laser powder bed fusion of Ti–6Al–4V
ABSTRACT High layer thicknesses for laser powder bed fusion are promising for productivity increase. However, these are associated with increased process instability, spatter generation and powder degradation, crucial for alloys sensitive to oxygen. The effect of increasing layer thickness from 30 to 60 µm is studied focusing on Ti-6Al-4V spatter formation during LPBF and its characterisation, with scanning and transmission electron microscopy, combustion analysis and X-ray photoelectron spectroscopy. Results indicate that spatters are covered with a uniform Ti-Al-based oxide layer and Al-rich oxide particulates, the thickness of which is about twice that present on virgin powder. The oxygen content was about 60% higher in spatters compared to the virgin powder. The study highlights that increasing the layer thickness to 60 µm permits to reduce the total generation of spatters by ∼40%, while maintaining similar spatter characteristics and static tensile properties. Hence, this allows to increase build rate without compromising process robustness. Highlights Increased layer thickness from 30 to 60 µm resulted in ∼40% lower amount of spatter generated per build Increased layer thickness from 30 to 60 µm resulted in ∼17% higher amount of generated spatter per scanned layer Increase in bulk oxygen content by >60% was registered for spatter compared to the virgin powder in both cases The oxide layer is about twice thicker on the spatter particles compared to virgin powder
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy
Powder Metallurgy 工程技术-冶金工程
CiteScore
2.90
自引率
7.10%
发文量
30
审稿时长
3 months
期刊介绍: Powder Metallurgy is an international journal publishing peer-reviewed original research on the science and practice of powder metallurgy and particulate technology. Coverage includes metallic particulate materials, PM tool materials, hard materials, composites, and novel powder based materials.
期刊最新文献
Effect of duplex surface treatment on the impact properties of maraging steel produced by laser powder bed fusion Characteristic analysis of high-speed steel powder prepared by gas atomisation Potential of powder metallurgical methods to fabricate Fe-6.5Si soft magnetic components Günter Petzow 1926–2024 – Obituary Microstructure, material characteristics and mechanical properties of CoMoNiTa3 medium-entropy alloys through the vacuum hot pressing process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1