由SKKS双折射推断的印度东北部地幔形变和地震各向异性

IF 0.5 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Studia Geophysica et Geodaetica Pub Date : 2021-01-08 DOI:10.1007/s11200-020-1121-y
Poulommi Mondal, Debasis D. Mohanty
{"title":"由SKKS双折射推断的印度东北部地幔形变和地震各向异性","authors":"Poulommi Mondal,&nbsp;Debasis D. Mohanty","doi":"10.1007/s11200-020-1121-y","DOIUrl":null,"url":null,"abstract":"<p>The present study produces very new SKKS splitting measurements from the Northeast India, suggesting the region as tectonically more heterogeneous and complex in nature. It fills the gap of anisotropic parameters from an epicentral range of 140°–180° in order to understand the lithospheric deformation patterns of the terrain in a better way. The splitting parameters namely polarisation direction of fast waves (?) and delay time are the manifestation of anisotropic effects of a medium. The present SKKS splitting measurements from nine broadband seismic stations in Northeast India incorporate new understandings of deformation patterns for this region. At the Himalayan collision zone and sub-Himalayan region, the deformation pattern showing a perfect alignment of the ? parallel to the collisional arc (Main Boundary Thrust, Main Central Thrust), suggests that a localized strain derived from N-S Indo-Eurasian collision is the major source behind its complex tectonics. The SKKS splitting measurements at Assam foredeep region streamline the effect of Kopili fault in controlling the deformation patterns in a NW-SE direction. There is a significant difference in anisotropic behaviour of stations at the northern Shillong plateau compared to the stations at its southern proximity. The absolute plate motion (APM) parallel to ? in northern fringe of the plateau strictly indicates the influence of asthenospheric flow, which in turn is driven by APM of Indian plate in a no net rotation reference frame. On the other hand, major regional structures like the Dauki and Dapsi faults control the anisotropic pattern at the southern extremity of this plateau.</p>","PeriodicalId":22001,"journal":{"name":"Studia Geophysica et Geodaetica","volume":"65 1","pages":"36 - 52"},"PeriodicalIF":0.5000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11200-020-1121-y","citationCount":"5","resultStr":"{\"title\":\"Mantle deformation and seismic anisotropy beneath Northeast India inferred from SKKS birefringence\",\"authors\":\"Poulommi Mondal,&nbsp;Debasis D. Mohanty\",\"doi\":\"10.1007/s11200-020-1121-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study produces very new SKKS splitting measurements from the Northeast India, suggesting the region as tectonically more heterogeneous and complex in nature. It fills the gap of anisotropic parameters from an epicentral range of 140°–180° in order to understand the lithospheric deformation patterns of the terrain in a better way. The splitting parameters namely polarisation direction of fast waves (?) and delay time are the manifestation of anisotropic effects of a medium. The present SKKS splitting measurements from nine broadband seismic stations in Northeast India incorporate new understandings of deformation patterns for this region. At the Himalayan collision zone and sub-Himalayan region, the deformation pattern showing a perfect alignment of the ? parallel to the collisional arc (Main Boundary Thrust, Main Central Thrust), suggests that a localized strain derived from N-S Indo-Eurasian collision is the major source behind its complex tectonics. The SKKS splitting measurements at Assam foredeep region streamline the effect of Kopili fault in controlling the deformation patterns in a NW-SE direction. There is a significant difference in anisotropic behaviour of stations at the northern Shillong plateau compared to the stations at its southern proximity. The absolute plate motion (APM) parallel to ? in northern fringe of the plateau strictly indicates the influence of asthenospheric flow, which in turn is driven by APM of Indian plate in a no net rotation reference frame. On the other hand, major regional structures like the Dauki and Dapsi faults control the anisotropic pattern at the southern extremity of this plateau.</p>\",\"PeriodicalId\":22001,\"journal\":{\"name\":\"Studia Geophysica et Geodaetica\",\"volume\":\"65 1\",\"pages\":\"36 - 52\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s11200-020-1121-y\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geophysica et Geodaetica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11200-020-1121-y\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geophysica et Geodaetica","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s11200-020-1121-y","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 5

摘要

目前的研究产生了来自印度东北部的非常新的SKKS分裂测量,表明该地区在构造上更加不均匀和复杂。它填补了震中140°~ 180°范围内各向异性参数的空白,以便更好地了解地形的岩石圈变形模式。分裂参数即快波极化方向和延迟时间是介质各向异性效应的表现。目前来自印度东北部9个宽带地震台站的SKKS分裂测量结果结合了对该地区变形模式的新认识。在喜马拉雅碰撞带和亚喜马拉雅地区,变形模式呈现出完美的?平行于碰撞弧(主边界冲断、主中央冲断),表明源自南北向印度-欧亚碰撞的局部应变是其复杂构造背后的主要来源。阿萨姆前深地区SKKS分裂测量结果表明,Kopili断裂控制北西-东南方向的变形模式。西隆高原北部台站的各向异性与靠近西隆高原南部台站的各向异性有显著差异。平行于?的绝对板块运动(APM)在高原北部边缘,严格地表示软流圈流的影响,而软流圈流又受到无净旋转参考系下印度板块APM的驱动。另一方面,主要的区域构造,如道基断裂和大寺断裂控制了高原南端的各向异性格局。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mantle deformation and seismic anisotropy beneath Northeast India inferred from SKKS birefringence

The present study produces very new SKKS splitting measurements from the Northeast India, suggesting the region as tectonically more heterogeneous and complex in nature. It fills the gap of anisotropic parameters from an epicentral range of 140°–180° in order to understand the lithospheric deformation patterns of the terrain in a better way. The splitting parameters namely polarisation direction of fast waves (?) and delay time are the manifestation of anisotropic effects of a medium. The present SKKS splitting measurements from nine broadband seismic stations in Northeast India incorporate new understandings of deformation patterns for this region. At the Himalayan collision zone and sub-Himalayan region, the deformation pattern showing a perfect alignment of the ? parallel to the collisional arc (Main Boundary Thrust, Main Central Thrust), suggests that a localized strain derived from N-S Indo-Eurasian collision is the major source behind its complex tectonics. The SKKS splitting measurements at Assam foredeep region streamline the effect of Kopili fault in controlling the deformation patterns in a NW-SE direction. There is a significant difference in anisotropic behaviour of stations at the northern Shillong plateau compared to the stations at its southern proximity. The absolute plate motion (APM) parallel to ? in northern fringe of the plateau strictly indicates the influence of asthenospheric flow, which in turn is driven by APM of Indian plate in a no net rotation reference frame. On the other hand, major regional structures like the Dauki and Dapsi faults control the anisotropic pattern at the southern extremity of this plateau.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Geophysica et Geodaetica
Studia Geophysica et Geodaetica 地学-地球化学与地球物理
CiteScore
1.90
自引率
0.00%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Studia geophysica et geodaetica is an international journal covering all aspects of geophysics, meteorology and climatology, and of geodesy. Published by the Institute of Geophysics of the Academy of Sciences of the Czech Republic, it has a long tradition, being published quarterly since 1956. Studia publishes theoretical and methodological contributions, which are of interest for academia as well as industry. The journal offers fast publication of contributions in regular as well as topical issues.
期刊最新文献
Present-day crustal deformation based on an interpolated GPS velocity field in the collision zone of the Arabia-Eurasia tectonic plates Effect of the 2021 Cumbre Vieja eruption on precipitable water vapor and atmospheric particles analysed using GNSS and remote sensing Geophysical structure of a local area in the lunar Oceanus Procellarum region investigated using the gravity gradient method Estimation of the minimal detectable horizontal acceleration of GNSS CORS The area of rhumb polygons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1