{"title":"心脏疾病预测的机器学习方法综述:未来研究差距的方向","authors":"Fathima. A. Vellameeran, T. Brindha","doi":"10.1515/bams-2020-0069","DOIUrl":null,"url":null,"abstract":"Abstract Objectives To make a clear literature review on state-of-the-art heart disease prediction models. Methods It reviews 61 research papers and states the significant analysis. Initially, the analysis addresses the contributions of each literature works and observes the simulation environment. Here, different types of machine learning algorithms deployed in each contribution. In addition, the utilized dataset for existing heart disease prediction models was observed. Results The performance measures computed in entire papers like prediction accuracy, prediction error, specificity, sensitivity, f-measure, etc., are learned. Further, the best performance is also checked to confirm the effectiveness of entire contributions. Conclusions The comprehensive research challenges and the gap are portrayed based on the development of intelligent methods concerning the unresolved challenges in heart disease prediction using data mining techniques.","PeriodicalId":42620,"journal":{"name":"Bio-Algorithms and Med-Systems","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An integrated review on machine learning approaches for heart disease prediction: Direction towards future research gaps\",\"authors\":\"Fathima. A. Vellameeran, T. Brindha\",\"doi\":\"10.1515/bams-2020-0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Objectives To make a clear literature review on state-of-the-art heart disease prediction models. Methods It reviews 61 research papers and states the significant analysis. Initially, the analysis addresses the contributions of each literature works and observes the simulation environment. Here, different types of machine learning algorithms deployed in each contribution. In addition, the utilized dataset for existing heart disease prediction models was observed. Results The performance measures computed in entire papers like prediction accuracy, prediction error, specificity, sensitivity, f-measure, etc., are learned. Further, the best performance is also checked to confirm the effectiveness of entire contributions. Conclusions The comprehensive research challenges and the gap are portrayed based on the development of intelligent methods concerning the unresolved challenges in heart disease prediction using data mining techniques.\",\"PeriodicalId\":42620,\"journal\":{\"name\":\"Bio-Algorithms and Med-Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bio-Algorithms and Med-Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/bams-2020-0069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bio-Algorithms and Med-Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/bams-2020-0069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
An integrated review on machine learning approaches for heart disease prediction: Direction towards future research gaps
Abstract Objectives To make a clear literature review on state-of-the-art heart disease prediction models. Methods It reviews 61 research papers and states the significant analysis. Initially, the analysis addresses the contributions of each literature works and observes the simulation environment. Here, different types of machine learning algorithms deployed in each contribution. In addition, the utilized dataset for existing heart disease prediction models was observed. Results The performance measures computed in entire papers like prediction accuracy, prediction error, specificity, sensitivity, f-measure, etc., are learned. Further, the best performance is also checked to confirm the effectiveness of entire contributions. Conclusions The comprehensive research challenges and the gap are portrayed based on the development of intelligent methods concerning the unresolved challenges in heart disease prediction using data mining techniques.
期刊介绍:
The journal Bio-Algorithms and Med-Systems (BAMS), edited by the Jagiellonian University Medical College, provides a forum for the exchange of information in the interdisciplinary fields of computational methods applied in medicine, presenting new algorithms and databases that allows the progress in collaborations between medicine, informatics, physics, and biochemistry. Projects linking specialists representing these disciplines are welcome to be published in this Journal. Articles in BAMS are published in English. Topics Bioinformatics Systems biology Telemedicine E-Learning in Medicine Patient''s electronic record Image processing Medical databases.