{"title":"水泥增强土对粘性土中复合桩极限侧阻力的影响","authors":"Zhijun Yang , Kexin Chen , Xudong Fu , Zhiyan Zou","doi":"10.1016/j.jrmge.2023.03.010","DOIUrl":null,"url":null,"abstract":"<div><p>The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years. However, how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated. In this paper, the ultimate lateral resistance of the composite pile was studied by finite element limit analysis (FELA) and theoretical upper-bound analysis. The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles. The effects of the enhanced soil thickness, strength, and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied. The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor (<em>N</em><sub>P</sub>), and there is a critical thickness beyond which the thickness no longer affects the <em>N</em><sub>P</sub>. Increasing the enhanced soil strength induced 6.2%–232.6% increase of <em>N</em><sub>P</sub>. However, no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil. The maximum increment of <em>N</em><sub>P</sub> is only 30.5% caused by the increase of interface adhesion factor (<em>α</em>). An empirical model was developed to calculate the <em>N</em><sub>P</sub> of the composite pile, and the results show excellent agreement with the analytical results.</p></div>","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"16 1","pages":"Pages 183-191"},"PeriodicalIF":9.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674775523001099/pdfft?md5=068404dd8af592dc62f570db764642ce&pid=1-s2.0-S1674775523001099-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effects of cement-enhanced soil on the ultimate lateral resistance of composite pile in clayey soil\",\"authors\":\"Zhijun Yang , Kexin Chen , Xudong Fu , Zhiyan Zou\",\"doi\":\"10.1016/j.jrmge.2023.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years. However, how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated. In this paper, the ultimate lateral resistance of the composite pile was studied by finite element limit analysis (FELA) and theoretical upper-bound analysis. The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles. The effects of the enhanced soil thickness, strength, and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied. The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor (<em>N</em><sub>P</sub>), and there is a critical thickness beyond which the thickness no longer affects the <em>N</em><sub>P</sub>. Increasing the enhanced soil strength induced 6.2%–232.6% increase of <em>N</em><sub>P</sub>. However, no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil. The maximum increment of <em>N</em><sub>P</sub> is only 30.5% caused by the increase of interface adhesion factor (<em>α</em>). An empirical model was developed to calculate the <em>N</em><sub>P</sub> of the composite pile, and the results show excellent agreement with the analytical results.</p></div>\",\"PeriodicalId\":54219,\"journal\":{\"name\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"volume\":\"16 1\",\"pages\":\"Pages 183-191\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1674775523001099/pdfft?md5=068404dd8af592dc62f570db764642ce&pid=1-s2.0-S1674775523001099-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rock Mechanics and Geotechnical Engineering\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674775523001099\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674775523001099","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Effects of cement-enhanced soil on the ultimate lateral resistance of composite pile in clayey soil
The composite pile consisting of core-pile and surrounding cement-enhanced soil is a promising pile foundation in recent years. However, how and to what extent the cement-enhanced soil influences the ultimate lateral resistance has not been fully investigated. In this paper, the ultimate lateral resistance of the composite pile was studied by finite element limit analysis (FELA) and theoretical upper-bound analysis. The results of FELA and theoretical analysis revealed three failure modes of laterally loaded composite piles. The effects of the enhanced soil thickness, strength, and pile-enhanced soil interface characteristics on the ultimate lateral resistance were studied. The results show that increasing the enhanced soil thickness leads to a significant improvement on ultimate lateral resistance factor (NP), and there is a critical thickness beyond which the thickness no longer affects the NP. Increasing the enhanced soil strength induced 6.2%–232.6% increase of NP. However, no noticeable impact was detected when the enhanced soil strength was eight times higher than that of the natural soil. The maximum increment of NP is only 30.5% caused by the increase of interface adhesion factor (α). An empirical model was developed to calculate the NP of the composite pile, and the results show excellent agreement with the analytical results.
期刊介绍:
The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.