利用机器学习方法阐明复合作用机制和预测细胞毒性,考虑预测置信度

Q3 Biochemistry, Genetics and Molecular Biology Current protocols in chemical biology Pub Date : 2019-08-11 DOI:10.1002/cpch.73
Georgios Drakakis, Isidro Cortés-Ciriano, Ben Alexander-Dann, Andreas Bender
{"title":"利用机器学习方法阐明复合作用机制和预测细胞毒性,考虑预测置信度","authors":"Georgios Drakakis,&nbsp;Isidro Cortés-Ciriano,&nbsp;Ben Alexander-Dann,&nbsp;Andreas Bender","doi":"10.1002/cpch.73","DOIUrl":null,"url":null,"abstract":"<p>The modes of action (MoAs) of drugs frequently are unknown, because many are small molecules initially identified from phenotypic screens, giving rise to the need to elucidate their MoAs. In addition, the high attrition rate for candidate drugs in preclinical studies due to intolerable toxicity has motivated the development of computational approaches to predict drug candidate (cyto)toxicity as early as possible in the drug-discovery process. Here, we provide detailed instructions for capitalizing on bioactivity predictions to elucidate the MoAs of small molecules and infer their underlying phenotypic effects. We illustrate how these predictions can be used to infer the underlying antidepressive effects of marketed drugs. We also provide the necessary functionalities to model cytotoxicity data using single and ensemble machine-learning algorithms. Finally, we give detailed instructions on how to calculate confidence intervals for individual predictions using the conformal prediction framework. © 2019 by John Wiley &amp; Sons, Inc.</p>","PeriodicalId":38051,"journal":{"name":"Current protocols in chemical biology","volume":"11 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/cpch.73","citationCount":"1","resultStr":"{\"title\":\"Elucidating Compound Mechanism of Action and Predicting Cytotoxicity Using Machine Learning Approaches, Taking Prediction Confidence into Account\",\"authors\":\"Georgios Drakakis,&nbsp;Isidro Cortés-Ciriano,&nbsp;Ben Alexander-Dann,&nbsp;Andreas Bender\",\"doi\":\"10.1002/cpch.73\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The modes of action (MoAs) of drugs frequently are unknown, because many are small molecules initially identified from phenotypic screens, giving rise to the need to elucidate their MoAs. In addition, the high attrition rate for candidate drugs in preclinical studies due to intolerable toxicity has motivated the development of computational approaches to predict drug candidate (cyto)toxicity as early as possible in the drug-discovery process. Here, we provide detailed instructions for capitalizing on bioactivity predictions to elucidate the MoAs of small molecules and infer their underlying phenotypic effects. We illustrate how these predictions can be used to infer the underlying antidepressive effects of marketed drugs. We also provide the necessary functionalities to model cytotoxicity data using single and ensemble machine-learning algorithms. Finally, we give detailed instructions on how to calculate confidence intervals for individual predictions using the conformal prediction framework. © 2019 by John Wiley &amp; Sons, Inc.</p>\",\"PeriodicalId\":38051,\"journal\":{\"name\":\"Current protocols in chemical biology\",\"volume\":\"11 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/cpch.73\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protocols in chemical biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpch.73\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protocols in chemical biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpch.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 1

摘要

药物的作用模式(MoAs)通常是未知的,因为许多药物是最初从表型筛选中确定的小分子,因此需要阐明它们的MoAs。此外,在临床前研究中,由于无法忍受的毒性,候选药物的高损耗率促使了计算方法的发展,以便在药物发现过程中尽早预测候选药物(细胞)毒性。在这里,我们提供了详细的说明,利用生物活性预测来阐明小分子的MoAs,并推断其潜在的表型效应。我们说明这些预测如何可以用来推断潜在的抗抑郁作用的市场药物。我们还提供了必要的功能,使用单一和集成机器学习算法来模拟细胞毒性数据。最后,我们详细说明了如何使用保形预测框架计算单个预测的置信区间。©2019 by John Wiley &儿子,Inc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Elucidating Compound Mechanism of Action and Predicting Cytotoxicity Using Machine Learning Approaches, Taking Prediction Confidence into Account

The modes of action (MoAs) of drugs frequently are unknown, because many are small molecules initially identified from phenotypic screens, giving rise to the need to elucidate their MoAs. In addition, the high attrition rate for candidate drugs in preclinical studies due to intolerable toxicity has motivated the development of computational approaches to predict drug candidate (cyto)toxicity as early as possible in the drug-discovery process. Here, we provide detailed instructions for capitalizing on bioactivity predictions to elucidate the MoAs of small molecules and infer their underlying phenotypic effects. We illustrate how these predictions can be used to infer the underlying antidepressive effects of marketed drugs. We also provide the necessary functionalities to model cytotoxicity data using single and ensemble machine-learning algorithms. Finally, we give detailed instructions on how to calculate confidence intervals for individual predictions using the conformal prediction framework. © 2019 by John Wiley & Sons, Inc.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current protocols in chemical biology
Current protocols in chemical biology Biochemistry, Genetics and Molecular Biology-Biophysics
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Methods to Validate Binding and Kinetics of “Proximity-Inducing” Covalent Immune-Recruiting Molecules Multiparametric High-Content Assays to Measure Cell Health and Oxidative Damage as a Model for Drug-Induced Liver Injury Three-Color Imaging Enables Simultaneous Screening of Multiple RNA Targets on Small Molecule Microarrays Visualizing RNA Cytidine Acetyltransferase Activity by Northern Blotting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1