障碍物散射的相对轨迹公式

IF 2.3 1区 数学 Q1 MATHEMATICS Duke Mathematical Journal Pub Date : 2020-02-17 DOI:10.1215/00127094-2022-0053
Florian Hanisch, A. Strohmaier, Alden Waters
{"title":"障碍物散射的相对轨迹公式","authors":"Florian Hanisch, A. Strohmaier, Alden Waters","doi":"10.1215/00127094-2022-0053","DOIUrl":null,"url":null,"abstract":"We consider the case of scattering of several obstacles in $\\mathbb{R}^d$ for $d \\geq 2$. Then the absolutely continuous part of the Laplace operator $\\Delta$ with Dirichlet boundary conditions and the free Laplace operator $\\Delta_0$ are unitarily equivalent. For suitable functions that decay sufficiently fast we have that the difference $g(\\Delta)-g(\\Delta_0)$ is a trace-class operator and its trace is described by the Krein spectral shift function. In this paper we study the contribution to the trace (and hence the Krein spectral shift function) that arises from assembling several obstacles relative to a setting where the obstacles are completely separated. In the case of two obstacles we consider the Laplace operators $\\Delta_1$ and $\\Delta_2$ obtained by imposing Dirichlet boundary conditions only on one of the objects. Our main result in this case states that then $g(\\Delta) - g(\\Delta_1) - g(\\Delta_2) + g(\\Delta_0)$ is a trace class operator for a much larger class of functions (including functions of polynomial growth) and that this trace may still be computed by a modification of the Birman-Krein formula. In case $g(x)=x^\\frac{1}{2}$ the relative trace has a physical meaning as the vacuum energy of the massless scalar field and is expressible as an integral involving boundary layer operators. Such integrals have been derived in the physics literature using non-rigorous path integral derivations and our formula provides both a rigorous justification as well as a generalisation.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A relative trace formula for obstacle scattering\",\"authors\":\"Florian Hanisch, A. Strohmaier, Alden Waters\",\"doi\":\"10.1215/00127094-2022-0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the case of scattering of several obstacles in $\\\\mathbb{R}^d$ for $d \\\\geq 2$. Then the absolutely continuous part of the Laplace operator $\\\\Delta$ with Dirichlet boundary conditions and the free Laplace operator $\\\\Delta_0$ are unitarily equivalent. For suitable functions that decay sufficiently fast we have that the difference $g(\\\\Delta)-g(\\\\Delta_0)$ is a trace-class operator and its trace is described by the Krein spectral shift function. In this paper we study the contribution to the trace (and hence the Krein spectral shift function) that arises from assembling several obstacles relative to a setting where the obstacles are completely separated. In the case of two obstacles we consider the Laplace operators $\\\\Delta_1$ and $\\\\Delta_2$ obtained by imposing Dirichlet boundary conditions only on one of the objects. Our main result in this case states that then $g(\\\\Delta) - g(\\\\Delta_1) - g(\\\\Delta_2) + g(\\\\Delta_0)$ is a trace class operator for a much larger class of functions (including functions of polynomial growth) and that this trace may still be computed by a modification of the Birman-Krein formula. In case $g(x)=x^\\\\frac{1}{2}$ the relative trace has a physical meaning as the vacuum energy of the massless scalar field and is expressible as an integral involving boundary layer operators. Such integrals have been derived in the physics literature using non-rigorous path integral derivations and our formula provides both a rigorous justification as well as a generalisation.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0053\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0053","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

我们考虑几个障碍物散射的情况 $\mathbb{R}^d$ 为了 $d \geq 2$. 然后是拉普拉斯算子的绝对连续部分 $\Delta$ 用Dirichlet边界条件和自由拉普拉斯算子 $\Delta_0$ 都是一元等价的。对于衰减足够快的合适函数,我们有这个区别 $g(\Delta)-g(\Delta_0)$ 是一个迹类算子,其迹由Krein谱移函数描述。在本文中,我们研究了相对于障碍物完全分离的设置组装几个障碍物而产生的对迹(以及因此产生的Krein谱移函数)的贡献。在有两个障碍物的情况下,我们考虑拉普拉斯算子 $\Delta_1$ 和 $\Delta_2$ 通过只对其中一个对象施加狄利克雷边界条件而得到。在这种情况下,我们的主要结果表明,那么 $g(\Delta) - g(\Delta_1) - g(\Delta_2) + g(\Delta_0)$ 是更大的函数类(包括多项式增长的函数)的跟踪类算子,并且该跟踪仍然可以通过对Birman-Krein公式的修改来计算。以防万一 $g(x)=x^\frac{1}{2}$ 相对迹线作为无质量标量场的真空能具有物理意义,可表示为涉及边界层算符的积分。这样的积分已经在物理文献中使用非严格路径积分推导得到,我们的公式提供了严格的证明以及推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A relative trace formula for obstacle scattering
We consider the case of scattering of several obstacles in $\mathbb{R}^d$ for $d \geq 2$. Then the absolutely continuous part of the Laplace operator $\Delta$ with Dirichlet boundary conditions and the free Laplace operator $\Delta_0$ are unitarily equivalent. For suitable functions that decay sufficiently fast we have that the difference $g(\Delta)-g(\Delta_0)$ is a trace-class operator and its trace is described by the Krein spectral shift function. In this paper we study the contribution to the trace (and hence the Krein spectral shift function) that arises from assembling several obstacles relative to a setting where the obstacles are completely separated. In the case of two obstacles we consider the Laplace operators $\Delta_1$ and $\Delta_2$ obtained by imposing Dirichlet boundary conditions only on one of the objects. Our main result in this case states that then $g(\Delta) - g(\Delta_1) - g(\Delta_2) + g(\Delta_0)$ is a trace class operator for a much larger class of functions (including functions of polynomial growth) and that this trace may still be computed by a modification of the Birman-Krein formula. In case $g(x)=x^\frac{1}{2}$ the relative trace has a physical meaning as the vacuum energy of the massless scalar field and is expressible as an integral involving boundary layer operators. Such integrals have been derived in the physics literature using non-rigorous path integral derivations and our formula provides both a rigorous justification as well as a generalisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
期刊最新文献
Role of Loupes Magnification in Tracheal Resection and Anastomosis. Asymptotic stability of the sine-Gordon kink under odd perturbations Small amplitude weak almost periodic solutions for the 1d NLS An infinite-rank summand of the homology cobordism group A twisted Yu construction, Harish-Chandra characters, and endoscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1