先进利用3D数字图像相关性提高电子元件的热可靠性和冲击可靠性

IF 0.7 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronics International Pub Date : 2021-02-01 DOI:10.1108/MI-08-2020-0052
J. Kwak, Soonwan Chung
{"title":"先进利用3D数字图像相关性提高电子元件的热可靠性和冲击可靠性","authors":"J. Kwak, Soonwan Chung","doi":"10.1108/MI-08-2020-0052","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to present an adaptation of digital image correlation (DIC) to the electronics industry for reliability assessment of electronic packages. Two case studies are presented: one for warpage measurement of a micro-electro-mechanical system (MEMS) package under different temperature conditions and the other for the measurement of transient displacements on the surface of a printed circuit board (PCB) assembly under free-fall drop conditions, which is for explaining the typical camera setup requirement and comparing among different boundary conditions by fastening methods of PCB.\n\n\nDesign/methodology/approach\nDIC warpage measurements on a small device, such as a MEMS package, require a special speckle pattern. A new method for the creation of speckle patterns was developed using carbon coating and aluminum evaporative deposition. To measure the transient response on the surface of a PCB during a free-fall impact event, three-dimensional (3D) DIC was integrated with synchronized stereo-high speed cameras. This approach enables the measurement of full-field displacement on the PCB surface during a free-fall impact event, contrary to the localized information that is obtained by the conventional strain gage and accelerometer method.\n\n\nFindings\nThe authors suggest the proposed patterning method to the small-sized microelectronics packages for DIC measurements. More generally, the idea is to have a thin layer of the dark or bright color of the background and then apply the white or black colored pattern, respectively, so that the surface has high contrast. Also, to achieve a proper size of speckles, this paper does not want to expose the measuring objects to high temperatures or pressures during the sample preparation stage. Of course, it seems a complicated process to use aluminum evaporator, carbon coater and electroformed mesh. However, the authors intend to share one of the solutions to achieve a proper pattern on such small-sized electronic packages.\n\n\nOriginality/value\n3D DIC technique can be successfully implemented for the measurement of micro-scale deformations in small packages (such as MEMS) and for the analysis of dynamic deformation of complex PCB.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advanced utilization of 3D digital image correlation for thermal and impact reliabilities of electronics components\",\"authors\":\"J. Kwak, Soonwan Chung\",\"doi\":\"10.1108/MI-08-2020-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to present an adaptation of digital image correlation (DIC) to the electronics industry for reliability assessment of electronic packages. Two case studies are presented: one for warpage measurement of a micro-electro-mechanical system (MEMS) package under different temperature conditions and the other for the measurement of transient displacements on the surface of a printed circuit board (PCB) assembly under free-fall drop conditions, which is for explaining the typical camera setup requirement and comparing among different boundary conditions by fastening methods of PCB.\\n\\n\\nDesign/methodology/approach\\nDIC warpage measurements on a small device, such as a MEMS package, require a special speckle pattern. A new method for the creation of speckle patterns was developed using carbon coating and aluminum evaporative deposition. To measure the transient response on the surface of a PCB during a free-fall impact event, three-dimensional (3D) DIC was integrated with synchronized stereo-high speed cameras. This approach enables the measurement of full-field displacement on the PCB surface during a free-fall impact event, contrary to the localized information that is obtained by the conventional strain gage and accelerometer method.\\n\\n\\nFindings\\nThe authors suggest the proposed patterning method to the small-sized microelectronics packages for DIC measurements. More generally, the idea is to have a thin layer of the dark or bright color of the background and then apply the white or black colored pattern, respectively, so that the surface has high contrast. Also, to achieve a proper size of speckles, this paper does not want to expose the measuring objects to high temperatures or pressures during the sample preparation stage. Of course, it seems a complicated process to use aluminum evaporator, carbon coater and electroformed mesh. However, the authors intend to share one of the solutions to achieve a proper pattern on such small-sized electronic packages.\\n\\n\\nOriginality/value\\n3D DIC technique can be successfully implemented for the measurement of micro-scale deformations in small packages (such as MEMS) and for the analysis of dynamic deformation of complex PCB.\\n\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/MI-08-2020-0052\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/MI-08-2020-0052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

目的本文旨在提出一种适用于电子行业的数字图像相关性(DIC),用于电子封装的可靠性评估。给出了两个案例研究:一个用于微机电系统(MEMS)封装在不同温度条件下的翘曲测量,另一个用于测量自由跌落条件下印刷电路板(PCB)组件表面的瞬态位移,用于解释典型的相机设置要求,并通过PCB.的紧固方法在不同的边界条件之间进行比较。在诸如MEMS封装的小型器件上的设计/方法/approachDIC翘曲测量需要特殊的散斑图案。开发了一种使用碳涂层和铝蒸发沉积来产生斑点图案的新方法。为了测量自由落体撞击事件期间PCB表面的瞬态响应,将三维(3D)DIC与同步立体高速摄像机集成在一起。这种方法能够在自由落体撞击事件期间测量PCB表面上的全场位移,这与传统应变仪和加速度计方法获得的局部信息相反。作者对用于DIC测量的小型微电子封装提出了所提出的图案化方法。更普遍地说,这个想法是在背景上涂上一层深色或亮色的薄层,然后分别涂上白色或黑色的图案,使表面具有高对比度。此外,为了获得合适尺寸的散斑,本文不希望在样品制备阶段将测量对象暴露在高温或高压下。当然,使用铝蒸发器、碳涂层器和电铸网似乎是一个复杂的过程。然而,作者打算分享其中一种解决方案,以在这种小型电子封装上实现适当的模式。Originality/value3DDIC技术可以成功地用于测量小封装(如MEMS)中的微尺度变形和分析复杂PCB的动态变形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advanced utilization of 3D digital image correlation for thermal and impact reliabilities of electronics components
Purpose This paper aims to present an adaptation of digital image correlation (DIC) to the electronics industry for reliability assessment of electronic packages. Two case studies are presented: one for warpage measurement of a micro-electro-mechanical system (MEMS) package under different temperature conditions and the other for the measurement of transient displacements on the surface of a printed circuit board (PCB) assembly under free-fall drop conditions, which is for explaining the typical camera setup requirement and comparing among different boundary conditions by fastening methods of PCB. Design/methodology/approach DIC warpage measurements on a small device, such as a MEMS package, require a special speckle pattern. A new method for the creation of speckle patterns was developed using carbon coating and aluminum evaporative deposition. To measure the transient response on the surface of a PCB during a free-fall impact event, three-dimensional (3D) DIC was integrated with synchronized stereo-high speed cameras. This approach enables the measurement of full-field displacement on the PCB surface during a free-fall impact event, contrary to the localized information that is obtained by the conventional strain gage and accelerometer method. Findings The authors suggest the proposed patterning method to the small-sized microelectronics packages for DIC measurements. More generally, the idea is to have a thin layer of the dark or bright color of the background and then apply the white or black colored pattern, respectively, so that the surface has high contrast. Also, to achieve a proper size of speckles, this paper does not want to expose the measuring objects to high temperatures or pressures during the sample preparation stage. Of course, it seems a complicated process to use aluminum evaporator, carbon coater and electroformed mesh. However, the authors intend to share one of the solutions to achieve a proper pattern on such small-sized electronic packages. Originality/value 3D DIC technique can be successfully implemented for the measurement of micro-scale deformations in small packages (such as MEMS) and for the analysis of dynamic deformation of complex PCB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics International
Microelectronics International 工程技术-材料科学:综合
CiteScore
1.90
自引率
9.10%
发文量
28
审稿时长
>12 weeks
期刊介绍: Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details. Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are: • Advanced packaging • Ceramics • Chip attachment • Chip on board (COB) • Chip scale packaging • Flexible substrates • MEMS • Micro-circuit technology • Microelectronic materials • Multichip modules (MCMs) • Organic/polymer electronics • Printed electronics • Semiconductor technology • Solid state sensors • Thermal management • Thick/thin film technology • Wafer scale processing.
期刊最新文献
Study of the electronic transport performance of ZnO-SiO2 film: the construction of grain boundary barrier 3-pass and 5-pass laser grooving & die strength characterization for reinforced internal low-k 55nm node wafer structure via heat-treatment process Deformation and crack growth in multilayered ceramic capacitor during thermal reflow process: numerical and experimental investigation Simplifying finite elements analysis of four-point bending tests for flip chip microcomponents Quasi-elliptic band pass filter using resonators based on coupling theory for ultra-wide band applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1