{"title":"先进利用3D数字图像相关性提高电子元件的热可靠性和冲击可靠性","authors":"J. Kwak, Soonwan Chung","doi":"10.1108/MI-08-2020-0052","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThis paper aims to present an adaptation of digital image correlation (DIC) to the electronics industry for reliability assessment of electronic packages. Two case studies are presented: one for warpage measurement of a micro-electro-mechanical system (MEMS) package under different temperature conditions and the other for the measurement of transient displacements on the surface of a printed circuit board (PCB) assembly under free-fall drop conditions, which is for explaining the typical camera setup requirement and comparing among different boundary conditions by fastening methods of PCB.\n\n\nDesign/methodology/approach\nDIC warpage measurements on a small device, such as a MEMS package, require a special speckle pattern. A new method for the creation of speckle patterns was developed using carbon coating and aluminum evaporative deposition. To measure the transient response on the surface of a PCB during a free-fall impact event, three-dimensional (3D) DIC was integrated with synchronized stereo-high speed cameras. This approach enables the measurement of full-field displacement on the PCB surface during a free-fall impact event, contrary to the localized information that is obtained by the conventional strain gage and accelerometer method.\n\n\nFindings\nThe authors suggest the proposed patterning method to the small-sized microelectronics packages for DIC measurements. More generally, the idea is to have a thin layer of the dark or bright color of the background and then apply the white or black colored pattern, respectively, so that the surface has high contrast. Also, to achieve a proper size of speckles, this paper does not want to expose the measuring objects to high temperatures or pressures during the sample preparation stage. Of course, it seems a complicated process to use aluminum evaporator, carbon coater and electroformed mesh. However, the authors intend to share one of the solutions to achieve a proper pattern on such small-sized electronic packages.\n\n\nOriginality/value\n3D DIC technique can be successfully implemented for the measurement of micro-scale deformations in small packages (such as MEMS) and for the analysis of dynamic deformation of complex PCB.\n","PeriodicalId":49817,"journal":{"name":"Microelectronics International","volume":"38 1","pages":"14-22"},"PeriodicalIF":0.7000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advanced utilization of 3D digital image correlation for thermal and impact reliabilities of electronics components\",\"authors\":\"J. Kwak, Soonwan Chung\",\"doi\":\"10.1108/MI-08-2020-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThis paper aims to present an adaptation of digital image correlation (DIC) to the electronics industry for reliability assessment of electronic packages. Two case studies are presented: one for warpage measurement of a micro-electro-mechanical system (MEMS) package under different temperature conditions and the other for the measurement of transient displacements on the surface of a printed circuit board (PCB) assembly under free-fall drop conditions, which is for explaining the typical camera setup requirement and comparing among different boundary conditions by fastening methods of PCB.\\n\\n\\nDesign/methodology/approach\\nDIC warpage measurements on a small device, such as a MEMS package, require a special speckle pattern. A new method for the creation of speckle patterns was developed using carbon coating and aluminum evaporative deposition. To measure the transient response on the surface of a PCB during a free-fall impact event, three-dimensional (3D) DIC was integrated with synchronized stereo-high speed cameras. This approach enables the measurement of full-field displacement on the PCB surface during a free-fall impact event, contrary to the localized information that is obtained by the conventional strain gage and accelerometer method.\\n\\n\\nFindings\\nThe authors suggest the proposed patterning method to the small-sized microelectronics packages for DIC measurements. More generally, the idea is to have a thin layer of the dark or bright color of the background and then apply the white or black colored pattern, respectively, so that the surface has high contrast. Also, to achieve a proper size of speckles, this paper does not want to expose the measuring objects to high temperatures or pressures during the sample preparation stage. Of course, it seems a complicated process to use aluminum evaporator, carbon coater and electroformed mesh. However, the authors intend to share one of the solutions to achieve a proper pattern on such small-sized electronic packages.\\n\\n\\nOriginality/value\\n3D DIC technique can be successfully implemented for the measurement of micro-scale deformations in small packages (such as MEMS) and for the analysis of dynamic deformation of complex PCB.\\n\",\"PeriodicalId\":49817,\"journal\":{\"name\":\"Microelectronics International\",\"volume\":\"38 1\",\"pages\":\"14-22\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/MI-08-2020-0052\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/MI-08-2020-0052","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Advanced utilization of 3D digital image correlation for thermal and impact reliabilities of electronics components
Purpose
This paper aims to present an adaptation of digital image correlation (DIC) to the electronics industry for reliability assessment of electronic packages. Two case studies are presented: one for warpage measurement of a micro-electro-mechanical system (MEMS) package under different temperature conditions and the other for the measurement of transient displacements on the surface of a printed circuit board (PCB) assembly under free-fall drop conditions, which is for explaining the typical camera setup requirement and comparing among different boundary conditions by fastening methods of PCB.
Design/methodology/approach
DIC warpage measurements on a small device, such as a MEMS package, require a special speckle pattern. A new method for the creation of speckle patterns was developed using carbon coating and aluminum evaporative deposition. To measure the transient response on the surface of a PCB during a free-fall impact event, three-dimensional (3D) DIC was integrated with synchronized stereo-high speed cameras. This approach enables the measurement of full-field displacement on the PCB surface during a free-fall impact event, contrary to the localized information that is obtained by the conventional strain gage and accelerometer method.
Findings
The authors suggest the proposed patterning method to the small-sized microelectronics packages for DIC measurements. More generally, the idea is to have a thin layer of the dark or bright color of the background and then apply the white or black colored pattern, respectively, so that the surface has high contrast. Also, to achieve a proper size of speckles, this paper does not want to expose the measuring objects to high temperatures or pressures during the sample preparation stage. Of course, it seems a complicated process to use aluminum evaporator, carbon coater and electroformed mesh. However, the authors intend to share one of the solutions to achieve a proper pattern on such small-sized electronic packages.
Originality/value
3D DIC technique can be successfully implemented for the measurement of micro-scale deformations in small packages (such as MEMS) and for the analysis of dynamic deformation of complex PCB.
期刊介绍:
Microelectronics International provides an authoritative, international and independent forum for the critical evaluation and dissemination of research and development, applications, processes and current practices relating to advanced packaging, micro-circuit engineering, interconnection, semiconductor technology and systems engineering. It represents a current, comprehensive and practical information tool. The Editor, Dr John Atkinson, welcomes contributions to the journal including technical papers, research papers, case studies and review papers for publication. Please view the Author Guidelines for further details.
Microelectronics International comprises a multi-disciplinary study of the key technologies and related issues associated with the design, manufacture, assembly and various applications of miniaturized electronic devices and advanced packages. Among the broad range of topics covered are:
• Advanced packaging
• Ceramics
• Chip attachment
• Chip on board (COB)
• Chip scale packaging
• Flexible substrates
• MEMS
• Micro-circuit technology
• Microelectronic materials
• Multichip modules (MCMs)
• Organic/polymer electronics
• Printed electronics
• Semiconductor technology
• Solid state sensors
• Thermal management
• Thick/thin film technology
• Wafer scale processing.