{"title":"科学游戏的设计挑战","authors":"Aditya Anupam, Ridhima Gupta, Shubhangi Gupta, Zhendong Li, Nora Hong, A. Naeemi, Nassim Parvin","doi":"10.14434/ijdl.v11i1.24264","DOIUrl":null,"url":null,"abstract":"The abstract nature of quantum mechanics makes it difficult to visualize. This is one of the reasons it is taught in the language of mathematics. Without an opportunity to directly observe or interact with quantum phenomena, students struggle to develop conceptual understandings of its theories and formulas. In this paper we present the process of designing a digital game that supplements introductory quantum mechanics curricula. We present our design process anchored on three key challenges: 1) drawing upon students’ past experiences and knowledge of classical mechanics while at the same time helping them break free of it to understand the unique qualities and characteristics of quantum mechanics; 2) creating an environment that is accurate in its depiction of the mathematical formulations of quantum mechanics while also playful and engaging for students; and 3) developing characters that are relatable to players but also do not reinforce gender stereotypes. Our design process can serve as a useful resource for educational game designers by providing a model for addressing these challenges.","PeriodicalId":91509,"journal":{"name":"International journal of designs for learning","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Design Challenges for Science Games:\",\"authors\":\"Aditya Anupam, Ridhima Gupta, Shubhangi Gupta, Zhendong Li, Nora Hong, A. Naeemi, Nassim Parvin\",\"doi\":\"10.14434/ijdl.v11i1.24264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The abstract nature of quantum mechanics makes it difficult to visualize. This is one of the reasons it is taught in the language of mathematics. Without an opportunity to directly observe or interact with quantum phenomena, students struggle to develop conceptual understandings of its theories and formulas. In this paper we present the process of designing a digital game that supplements introductory quantum mechanics curricula. We present our design process anchored on three key challenges: 1) drawing upon students’ past experiences and knowledge of classical mechanics while at the same time helping them break free of it to understand the unique qualities and characteristics of quantum mechanics; 2) creating an environment that is accurate in its depiction of the mathematical formulations of quantum mechanics while also playful and engaging for students; and 3) developing characters that are relatable to players but also do not reinforce gender stereotypes. Our design process can serve as a useful resource for educational game designers by providing a model for addressing these challenges.\",\"PeriodicalId\":91509,\"journal\":{\"name\":\"International journal of designs for learning\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of designs for learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14434/ijdl.v11i1.24264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of designs for learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14434/ijdl.v11i1.24264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The abstract nature of quantum mechanics makes it difficult to visualize. This is one of the reasons it is taught in the language of mathematics. Without an opportunity to directly observe or interact with quantum phenomena, students struggle to develop conceptual understandings of its theories and formulas. In this paper we present the process of designing a digital game that supplements introductory quantum mechanics curricula. We present our design process anchored on three key challenges: 1) drawing upon students’ past experiences and knowledge of classical mechanics while at the same time helping them break free of it to understand the unique qualities and characteristics of quantum mechanics; 2) creating an environment that is accurate in its depiction of the mathematical formulations of quantum mechanics while also playful and engaging for students; and 3) developing characters that are relatable to players but also do not reinforce gender stereotypes. Our design process can serve as a useful resource for educational game designers by providing a model for addressing these challenges.