推荐Instagram上的电影账号

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet Technology Pub Date : 2023-01-13 DOI:10.1145/3579852
Yu-Jhen Wang, Anthony J. T. Lee
{"title":"推荐Instagram上的电影账号","authors":"Yu-Jhen Wang, Anthony J. T. Lee","doi":"10.1145/3579852","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of social networks, many businesses have started implementing their branding or targeted advertising strategies to reach potential customers through social media platforms. It is desirable and essential to help businesses to reach mass audiences and assist users to find favorite business accounts on social media platforms. In the movie industry, movie companies often create business accounts (movie accounts) to promote their movies and capture the attention of followers on Instagram. Instagram contains rich information about movies and user feedback, while IMDb, one of the most popular online databases, contains well-organized information related to movies. The features extracted from the data collected from Instagram and IMDb can complement each other. Therefore, in this study, we propose a framework for recommending movie accounts to users on Instagram by using the data collected from Instagram and IMDb platforms. The experiment results show that our proposed framework outperforms the comparing methods in terms of precision, recall, F1-score, and Normalized Discounted Cumulative Gain (NDCG), and mitigates the effect of cold start problems. The proposed framework can help movie companies or businesses reach potential audiences and implement effective targeted advertising strategies.","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":"23 1","pages":"1 - 21"},"PeriodicalIF":3.9000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Movie Account Recommendation on Instagram\",\"authors\":\"Yu-Jhen Wang, Anthony J. T. Lee\",\"doi\":\"10.1145/3579852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing popularity of social networks, many businesses have started implementing their branding or targeted advertising strategies to reach potential customers through social media platforms. It is desirable and essential to help businesses to reach mass audiences and assist users to find favorite business accounts on social media platforms. In the movie industry, movie companies often create business accounts (movie accounts) to promote their movies and capture the attention of followers on Instagram. Instagram contains rich information about movies and user feedback, while IMDb, one of the most popular online databases, contains well-organized information related to movies. The features extracted from the data collected from Instagram and IMDb can complement each other. Therefore, in this study, we propose a framework for recommending movie accounts to users on Instagram by using the data collected from Instagram and IMDb platforms. The experiment results show that our proposed framework outperforms the comparing methods in terms of precision, recall, F1-score, and Normalized Discounted Cumulative Gain (NDCG), and mitigates the effect of cold start problems. The proposed framework can help movie companies or businesses reach potential audiences and implement effective targeted advertising strategies.\",\"PeriodicalId\":50911,\"journal\":{\"name\":\"ACM Transactions on Internet Technology\",\"volume\":\"23 1\",\"pages\":\"1 - 21\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3579852\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3579852","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着社交网络的日益普及,许多企业已经开始实施他们的品牌或有针对性的广告策略,通过社交媒体平台接触潜在客户。帮助企业接触大众受众,帮助用户在社交媒体平台上找到喜欢的企业账户,这是可取的,也是必不可少的。在电影行业,电影公司经常在Instagram上创建商业账号(电影账号)来宣传自己的电影,吸引粉丝的关注。Instagram包含丰富的电影信息和用户反馈,而IMDb是最受欢迎的在线数据库之一,包含了组织良好的电影相关信息。从Instagram和IMDb收集的数据中提取的特征可以互补。因此,在本研究中,我们利用从Instagram和IMDb平台收集的数据,提出了一个向Instagram用户推荐电影账户的框架。实验结果表明,该框架在查全率、查全率、f1分数和归一化贴现累积增益(NDCG)等方面优于其他方法,并减轻了冷启动问题的影响。所提出的框架可以帮助电影公司或企业接触到潜在的观众,并实施有效的定向广告策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Movie Account Recommendation on Instagram
With the increasing popularity of social networks, many businesses have started implementing their branding or targeted advertising strategies to reach potential customers through social media platforms. It is desirable and essential to help businesses to reach mass audiences and assist users to find favorite business accounts on social media platforms. In the movie industry, movie companies often create business accounts (movie accounts) to promote their movies and capture the attention of followers on Instagram. Instagram contains rich information about movies and user feedback, while IMDb, one of the most popular online databases, contains well-organized information related to movies. The features extracted from the data collected from Instagram and IMDb can complement each other. Therefore, in this study, we propose a framework for recommending movie accounts to users on Instagram by using the data collected from Instagram and IMDb platforms. The experiment results show that our proposed framework outperforms the comparing methods in terms of precision, recall, F1-score, and Normalized Discounted Cumulative Gain (NDCG), and mitigates the effect of cold start problems. The proposed framework can help movie companies or businesses reach potential audiences and implement effective targeted advertising strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Internet Technology
ACM Transactions on Internet Technology 工程技术-计算机:软件工程
CiteScore
10.30
自引率
1.90%
发文量
137
审稿时长
>12 weeks
期刊介绍: ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.
期刊最新文献
Interpersonal Communication Interconnection in Media Convergence Metaverse Using Reinforcement Learning and Error Models for Drone Precision Landing Towards Human-AI Teaming to Mitigate Alert Fatigue in Security Operations Centres RESP: A Recursive Clustering Approach for Edge Server Placement in Mobile Edge Computing OTI-IoT: A Blockchain-based Operational Threat Intelligence Framework for Multi-vector DDoS Attacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1