利用卫星图像估算作物产量:线性和非线性模型的比较

Q4 Agricultural and Biological Sciences AgriScientia Pub Date : 2018-06-29 DOI:10.31047/1668.298X.V1.N35.20447
S. Sayago, M. Bocco
{"title":"利用卫星图像估算作物产量:线性和非线性模型的比较","authors":"S. Sayago, M. Bocco","doi":"10.31047/1668.298X.V1.N35.20447","DOIUrl":null,"url":null,"abstract":"Development of models for crop yield prediction using remote sensing allows accurate, reliable and timely estimations over large areas. articularly, this information is necessary to ensure the adequacy of a nation’s food supply as well as to aid policy makers and farmers. In Argentina, soybean (Glycine max (L.) Merr.) and corn (Zea mays L.) are the most important crops. The goal of this research was to develop and evaluate linear and non-linear models to estimate crop yield from satellite data. Particularly, we proposed and applied those models to obtain soybean and corn yield in the central region of Cordoba (Argentina) using Landsat and SPOT images. The models were designed taking into account all or some bands included in the images from one or both satellites. Results showed that models provided a good fit when all images are used, being superior the accuracy obtained by neural networks (NN). For soybean, the best estimation presented a coefficient of determination equal to 0.90 with NN and 0.82 with multiple linear regression models, and for corn 0.92 and 0.88, respectively. This study concludes that Landsat and SPOT images can be effectively used to predict, in early to mid-season crop growth stages, corn and soybean yield.","PeriodicalId":39278,"journal":{"name":"AgriScientia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.31047/1668.298X.V1.N35.20447","citationCount":"15","resultStr":"{\"title\":\"Crop yield estimation using satellite images: comparison of linear and non-linear models\",\"authors\":\"S. Sayago, M. Bocco\",\"doi\":\"10.31047/1668.298X.V1.N35.20447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of models for crop yield prediction using remote sensing allows accurate, reliable and timely estimations over large areas. articularly, this information is necessary to ensure the adequacy of a nation’s food supply as well as to aid policy makers and farmers. In Argentina, soybean (Glycine max (L.) Merr.) and corn (Zea mays L.) are the most important crops. The goal of this research was to develop and evaluate linear and non-linear models to estimate crop yield from satellite data. Particularly, we proposed and applied those models to obtain soybean and corn yield in the central region of Cordoba (Argentina) using Landsat and SPOT images. The models were designed taking into account all or some bands included in the images from one or both satellites. Results showed that models provided a good fit when all images are used, being superior the accuracy obtained by neural networks (NN). For soybean, the best estimation presented a coefficient of determination equal to 0.90 with NN and 0.82 with multiple linear regression models, and for corn 0.92 and 0.88, respectively. This study concludes that Landsat and SPOT images can be effectively used to predict, in early to mid-season crop growth stages, corn and soybean yield.\",\"PeriodicalId\":39278,\"journal\":{\"name\":\"AgriScientia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.31047/1668.298X.V1.N35.20447\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AgriScientia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31047/1668.298X.V1.N35.20447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriScientia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31047/1668.298X.V1.N35.20447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 15

摘要

利用遥感技术开发作物产量预测模型,可以对大面积进行准确、可靠和及时的估计。明确地说,这些信息对于确保一个国家的粮食供应充足以及援助决策者和农民是必要的。在阿根廷,大豆(Glycine max(L.)Merr.)玉米(Zea mays L.)是最重要的作物。这项研究的目标是开发和评估线性和非线性模型,以根据卫星数据估计作物产量。特别是,我们提出并应用这些模型,使用陆地卫星和SPOT图像获得了科尔多瓦(阿根廷)中部地区的大豆和玉米产量。这些模型的设计考虑了一颗或两颗卫星图像中包含的全部或部分波段。结果表明,当使用所有图像时,模型提供了良好的拟合,优于神经网络(NN)获得的精度。对于大豆,最佳估计的决定系数分别为0.90(NN)和0.82(多元线性回归模型),以及0.92和0.88(玉米)。这项研究得出的结论是,陆地卫星和SPOT图像可以有效地用于预测早中期作物生长阶段的玉米和大豆产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crop yield estimation using satellite images: comparison of linear and non-linear models
Development of models for crop yield prediction using remote sensing allows accurate, reliable and timely estimations over large areas. articularly, this information is necessary to ensure the adequacy of a nation’s food supply as well as to aid policy makers and farmers. In Argentina, soybean (Glycine max (L.) Merr.) and corn (Zea mays L.) are the most important crops. The goal of this research was to develop and evaluate linear and non-linear models to estimate crop yield from satellite data. Particularly, we proposed and applied those models to obtain soybean and corn yield in the central region of Cordoba (Argentina) using Landsat and SPOT images. The models were designed taking into account all or some bands included in the images from one or both satellites. Results showed that models provided a good fit when all images are used, being superior the accuracy obtained by neural networks (NN). For soybean, the best estimation presented a coefficient of determination equal to 0.90 with NN and 0.82 with multiple linear regression models, and for corn 0.92 and 0.88, respectively. This study concludes that Landsat and SPOT images can be effectively used to predict, in early to mid-season crop growth stages, corn and soybean yield.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AgriScientia
AgriScientia Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
0.30
自引率
0.00%
发文量
0
审稿时长
22 weeks
期刊介绍: AgriScientia es una revista de acceso abierto, de carácter científico-académico, gestionada por el Área de Difusión Científica de la Facultad de Ciencias Agropecuarias de la Universidad Nacional de Córdoba, Argentina. La revista recibe artículos en los idiomas español e inglés. El objetivo de esta publicación es la difusión de los resultados de investigaciones de carácter agronómico. Está destinada a investigadores, estudiantes de pregrado, grado y posgrado, profesionales en el área de las ciencias agropecuarias y público en general interesado en las temáticas relacionadas. Su periodicidad es semestral. Los artículos se reciben durante todo el año. Los tipos de documentos que se publican son artículos científicos, comunicaciones y revisiones.
期刊最新文献
Assessment of land use change in the dryland agricultural region of Córdoba, Argentina, between 2000 and 2020 based on NDVI data Impacto ambiental de las aplicaciones de fitosanitarios en producciones ornamentales intensivas en el partido de Moreno, provincia de Buenos Aires Selección de cepas bacterianas con capacidad antifúngica contra fitopatógenos de alfalfa para constituir un consorcio bacteriano Evaluating Nitrogen Release Rates of Commercial Slow-Release Urea Products Using Brix Value Analysis: A Validation Study Comparing Two Methods Aportes a la morfología de semillas de Hibiscus cannabinus L. y ajuste de la prueba de tetrazolio para estimar viabilidad y vigor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1